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Overview
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Overview
® Landau-Lifshitz was introduced as a model for dynamical
magnetic anisotropic interaction [LL35].

@® The Lax pair for it was constructed in [SkI79]. The spectral
parameter belongs to the torus.

© Riemann-Hilbert problem was developed in [Rod84].

O The large time asymptotic of fast decaying initial data was
computed on the physical level in [BI88].

@ The solitons and breathers were constructed in [Bob83].
® Whitham modulation theory was developed in [IKCP17].

@ Our goal is to establish large time asymptotics of fast decaying
initial data on the mathematical level.

® The talk is based on [DIP25].
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Model description
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® | andau-Lifshitz model is the anisotropic model of magnetic
waves.

® \We consider the continuous spin chain. Denote spin taking
values on the unit sphere as

3
S(x,t), x€R, teRy, ZSJQ:L
j=1

® \We assume the boundary condition

5$—1(0,0,1), x— +o0
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Model description

¢ Landau-Lifshitz equation describes the dynamics

aS %S
E—SX@"‘SX.}S
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Model description

¢ Landau-Lifshitz equation describes the dynamics

aS %S
E—SX@"‘SX.}S

® Here J describes the anisotropy of spin interaction

S 0 O
J= 0 hHh 0], O<h<hbh<dh
0 0 A

® | andau-Lifshitz model admits degenerations to the
Sine-Gordon equation when J; — 0 and to the NLS equation
when Jl, J2 — 0.
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Lax pair

® The Lax pair is given by

ov
X here
ow v
— =Vv
ot
3 3 3
U==i) oS, V=i ) ojSwmwn+i) o;Pjw,
J:]- jymvn:]' J:]'
j#mn

0S
7= (5 %9),
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Lax pair

® The Lax pair is given by

Ny

X here
oV W
— =Vv

ot

3 3
U=-i E oiSiwj, V=i E
j=1 Jj,m,n=1

J#mn

3
;i SiWmW, + 1 E o Pjw;
j=1

i j :4(Jj_Jl'); =123

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

6/ 43



000008000000 00
Elliptic parametrization

® The parameters w; admit parametrization using elliptic

functions
mmp by, K A k)
1_psn()\,k)’ 2_psn(A7k), 3_pSn()\,k)'
_ Vh—h K — L=h elliptic modulus.
2 S —h
where

A€ T?={\:|Re(N)| < 2K, |Im(\)| < 2K’}

and K, K’ are complete elliptic integrals.
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Jost solution

e We assume "fast decaying" and smooth initial conditions
Sli—o —(0,0,1) € S(R)

where S(R) is the Schwartz class.
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Jost solution

e We assume "fast decaying" and smooth initial conditions
Sli—o —(0,0,1) € S(R)

where S(R) is the Schwartz class.
® We define Jost solutions that satisfy the differential equation

OF o
T M) = UL )Fe(A %), U x) = —lzajsj(x)mg(x)

and the boundary conditions

Fi(X x) ~ e msxos 4 4o
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Symmetries

® The following shift properties hold

wi(A +2K) = —wi(N), wi(\+2iK') = wi(N),
wo(A +2K) = —mwa(N), wa(\ +2iK') = —wa(N),
W3(A—|—2K) = W3()\)7 W3()\+21K/) = —Wg()\),
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® The following shift properties hold

wi(A +2K) = —wi(N), wi(\+2iK') = wi(N),
wo(A +2K) = —mwa(N), wa(\ +2iK') = —wa(N),
W3(A—|—2K) = W3()\)7 W3()\+21K/) = —Wg()\),

® They imply the symmetries of coefficient matrix

o3U(\ + 2K, x)o3 = U(\, x), o1U\+ 2iK', x)o1 = U(), x).

® and the symmetries of Jost solutions

o3FL(A+ 2K, x)o3 = FL(A\, x), o1Fi(A+ 2iK',x)o1 = F£(), x).
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Scattering data

® By taking the ratio of Jost solutions we define the scattering
matrix

SO = (F- (A x) "L Fy(A x) = ( 28; ‘alES) > .
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Scattering data

® By taking the ratio of Jost solutions we define the scattering
matrix

SO = (F- (A x) "L Fy(A x) = ( 28; ‘alES) > .

e The reflection coefficient is given by

r(A) = :8\\;.

e \We make the following transformation

T\ x) = Fio(), x)ebws(Nos — (vg)()\,x),vf)()\,x)) .
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Analytical properties of Jost solutions

® | et us denote
Qp ={X:0<Im()\) <2K';|ReA| < 2K},
Q_ ={X: 2K <Im(A) <0;|Re\| < 2K},
M ={\eT?:Im(\) =0}
M ={\eT?:Im()\) = 2K’}

2iK’

Ty
Q.

I
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Analytical properties of Jost solutions

Lemma 1

The functions vg)()\,x), Ung)L)\,x) are analytic in the domains Q.

and bounded in the domains Q4 respectively. In addition
P (A, x), v (A, x) € C2(I).
Ideas of the proof:
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Ideas of the proof:

¢ Functions vg)(/\,x) satisfy integral equations.

® The kernel involves e*3s(M)(x~y)
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Analytical properties of Jost solutions

Lemma 1

The functions vg)()\, x), Ung)()\,x) are analytic in the domains Q.
and bounded in the domains Q4 respectively. In addition
o, x), v (A x) € €=(ry).
Ideas of the proof:

¢ Functions vg)(/\,x) satisfy integral equations.

® The kernel involves e*3s(M)(x~y)

® The function Im(ws())) does not change sign in Q1
—o0 < Im(wz(A)) <0 for XeQy;
0 <Im(ws(A)) <oco for AeQ_.

e Singularity of w3(\) at A = 0 needs to be taken care of

separately. It is done using AKNS equation approximation for
such A

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

12 / 43



00000000000 e00

Convenient formulas for scattering data

The functions a(\), b(\) admit two alternative expressions.

@ They can be written as the integrals

(1)) (3) Lot i

X v(_l)()\, T)dT.

@® They can also be expressed as the following determinants
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Reflection coefficient properties

Lemma 3

Under the soliton free assumption, a(\) # 0 the reflection
coeflicient r(\) corresponding to the initial data from the Schwartz
class satisfies

© r(\) € Co(ML UT)
@ r(A+2K) = —r())

© r(\ +2iK') = —r(}\)

0 r(0)=0

0 LW — o™, A0, VnmeN.
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Ideas of the proof

e Symmetry properties follow from symmetry properties of Jost
solutions.
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Ideas of the proof

e Symmetry properties follow from symmetry properties of Jost
solutions.

® Smoothness follows from the second representation in terms of
determinant.

® Behavior at zero is derived through the asymptotic analysis of
the first representation in terms of integral. AKNS
approximation near A = 0 is needed again.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

15 / 43



9000000000000 0000000

@® Riemann-Hilbert approach

Department of Stat
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Riemann-Hilbert problem for the initial condition

® |ntroduce the following functions
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Riemann-Hilbert problem for the initial condition

® |ntroduce the following functions

® Define the piecewise analytic function

YJr()‘aX)a A€ QJra

Y(Ax) = {Y_(A,x), AeQ .
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Riemann-Hilbert problem for the initial condition

Riemann-Hilbert problem 1.
® The function Y(A, x) is bounded, doubly periodic, and
piecewise analytic for A € T?/(1 UT3). Orientation of the
contours 1,5 is as specified below.

21K’ -

T

r
9K L

2K

B S ittt

—2iK’
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Riemann-Hilbert problem for the initial condition

® For \ € '1,I, the following jump condition holds

Yi(A x) = Yo (A x)G(A, x),

(TP e 2O
G()\,X) - <r()\)62iXW3(/\) 1 :

©® The function Y(\, x) satisfies the following symmetry
conditions

O'3Y()\+2K,X)0'3 = Y()\,X), O’1Y()\+21K/,X)O'1 = Y()\,X).

@ Function Y(\, x) satisfies normalization condition
det(Y(A\, x)) =1

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University
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Uniqueness

® The problem is not normalized but the symmetries and
determinant conditions still fix the solution up to a sign.

Solution Y (A, x) of the RHP 1 is unique up to a sign.
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Riemann-Hilbert problem on the Riemann surfaces

e Considering Riemann-Hilbert problem on the Riemann surfaces
without introduction of extra poles of solution requires
additional solvability conditions.
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Riemann-Hilbert problem on the Riemann surfaces

e Considering Riemann-Hilbert problem on the Riemann surfaces
without introduction of extra poles of solution requires
additional solvability conditions.

® This can be seen by looking at Cauchy kernel. For Riemann
surface of genus g the kernel C(u, A) fixed by the following
conditions

® C(u,A) with respect to A has pole at 4, at some divisor D of
degree g and zero at some point a.

® C(u, ) with respect to p has pole at A, at some point a, and
zero at some divisor D.

e The Cauchy transform

/f(u)C(u, A)dp

T

has poles at the divisor D with respect \.
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Riemann-Hilbert problem on the Riemann surfaces

® For the case of torus we take a = K +iK’ and D = iK’.

) = (i = A) = (i — 1K) + ¢ — K —iK') + ¢(K),

where ((.) is the Weierstrass (-function.
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) = (i = A) = (i — 1K) + ¢ — K —iK') + ¢(K),

where ((.) is the Weierstrass (-function.

® The periodicity properties:
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Riemann-Hilbert problem on the Riemann surfaces

® For the case of torus we take a = K +iK’ and D = iK’.

) = (i = A) = (i — 1K) + ¢ — K —iK') + ¢(K),

where ((.) is the Weierstrass (-function.

® The periodicity properties:

Clp+4K,\) = C(p, A+ 4K) = C(p + 4iK', \)
= C(p, A+ 4iK') = C(u, N).

® Poles at u = A, p = 1K', A = K + iK' with residues 1,—1, and
1 respectively.

e Zeros for A = iK', p = K +iK'.
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Riemann-Hilbert problem on the Riemann surfaces

The Riemann-Hilbert problem on the Riemann surfaces appeared in
the following works
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The Riemann-Hilbert problem on the Riemann surfaces appeared in
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® QOrthogonal polynomials and Padé approximations
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Riemann-Hilbert problem on the Riemann surfaces

The Riemann-Hilbert problem on the Riemann surfaces appeared in
the following works

® QOrthogonal polynomials and Padé approximations
[Ber21, Ber22]

® Calogero-Moser equations [DMDG23, Tak99]
e Finite gap solutions [KT12, MLT12]
® Parametrix construction [DIZ97, Kor04]
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Initial conditions

Theorem 2

Let Y (), x) be the solution of the Riemann-Hilbert problem 1 with
r(\) satisfying properties (1)-(5). Then the function S(x)
constructed from it by formula

3

Y(0,%)o3 (Y(0,%) " =D Si(x)a;,

Jj=1

belongs to the Schwartz class: 51(x), Sz2(x), S3(x) — 1 € S(R), and
it defines the initial data for the LL equation whose reflection
coefficient is given by r(\).
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Ideas of proof

e Following Deift-Zhou approach, we try to get problem with
jump close to identity.
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e Consider singular integral equation
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27 Mulrs
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Ideas of proof

e Following Deift-Zhou approach, we try to get problem with
jump close to identity.

e Reflection coefficient is split in the sum of analytic term and
term satisfying decay properties using Fourier transform.

e After deformation of the contour the jump is close to identity.

e Consider singular integral equation

W) =14 o [ x(x) (6 x) — 1) C(u A — 10)dl.

27 Mulrs

® Nonsymmetric solution of Riemann-Hilbert problem normalized
by ®(iK’) is given by

O x) =1+ — [ x(ux) (Gl x) — 1) Cru \)d.

27 Mulrs
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Ideas of proof

® Symmetric solution is constructed by

1
Y(N) =7 (P(N) + 03P (A + 2K)o3 + 01D (A + 21K )0y
—|—02¢()\ + 2K + 2iK’)0’2) ,
c =det (®(A) + 03P (A + 2K)o3 + 01P(X + 2K )o1 +
T2®(\ + 2K + 2iK")0) .

® Problem: singularity at A = K +iK’. It is crucial for us to use
the result of [Rod89] which claims that this singularity is
absent already for ®(\, x) based on perturbation approach.
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Time evolution

Assume t > 0 is fixed and

Si(x, t), Sa(x, t), S3(x,t) — 1 € S(R)

are solutions of LL equation. Denote by Fi(\, x, t) the Jost
solutions corresponding to S(x, t) with t > 0. Then the
matrix-valued functions

Jr(\, x, t) = FL(), x, t)eitmaMwa(X)os

solves equations of Lax pair of LL equation. Moreover the
scattering data depends on time as

a0 1) =a(\),  b(A, 1) = b(\)e it (V).
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Riemann-Hilbert problem corresponding to LL dynamics

Riemann-Hilbert problem 2.

® The function Y(A, x, t) is bounded and piecewise analytic
for A € T2/(I'1 U |_2).

® For )\ € 1,1, the following jump condition holds

Yi(A x,t) = Y_(\ x,t)G(A, x, t)

1+ (V)2 r(\)e 2itr(d)
G()\7X7 t) = <r(A)€|21$P(2\’%) ( ) 1 ’

where

p(A, ) = sews(A) — 2w (A)wa(N), s =

X
t
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Riemann-Hilbert problem corresponding to LL dynamics

©® The function Y(A, x, t) satisfies the following symmetry
conditions

o3Y (A + 2K, x,t)o3 = Y(\, x, t),
o1 Y\ +2iK' x, t)or = Y (), x, t).

@ Function Y(), x, t) satisfies normalization condition

det(Y(\, x,t)) = 1.
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Solution of LL from RHP

Lemma 4

Given Y (A, x, t) is a solution of the Riemann-Hilbert problem 2 the
function

V(A x,t) = Y(\x, t)e—itp()\7%)o—3

solves Lax pair of LL equation with S;j(x, t) given by

Y(0,x, )03 (Y(0,x, 1)) =) Si(x, t)o;. (1)
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Main result

Theorem 5

Let Y (A, x,t) be the solution of the Riemann-Hilbert problem 2
with r(\) satisfying the properties (1)-(5) and let the vector
function S(x, t) be determined by equation (1). Then, S(x,t)
solves the Cauchy problem for the LL equation characterized by the
reflection coefficient r(\) and fort — oo, 0<m< % <M,

1/ 20\ Y2 2
Si(x,t) = = <> wa(Xo) cosO(x, t) + O(t~3),
p \ tyo

So(x,t) = = <2”

p \ tpo
Ss(x,8) = 1 3 (S20. 1) + S3(x,0)) + O(tH),

1/2 ,
! > wi(Xo)sinf(x, t) + O(t™3),
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Parameters

where

O(x,t) = 2tp(Ao, 2) + vlogt — % —argl(iv) + argrg — 2co+
2800>
vlog ( ,
B3
X

P, 2) = 7 ws(A) = 2m(N)wa(A), 2=

and the value of the stationary point Ao € [-2K, 0] is determined
by the equation 9xp(Ao, ) = 0. With such Ao, the parameter
o = —03p(Ao, ) is obtained from

©o = p12 (8wi(Ao)w2(Xo)ws (Ao)+

(Wi (o) + w3 (X0))(2wa(Xo)wa(Xo) — 2ews(Mo)))
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Parameters

® The remaining terms are determined as follows:

= (%), v= 5 log(1+ [ro]).
B o(AN)o(A —2K)
) = o(A+ 21K )o(A — 2iK' — 2K)’
o(—2K)
o(2iK")o(—2iK' — 2K)’

/ (log (1 + |r(n)|?)) log B(n — o),

Bo =

where o(\) denotes the Weierstrass sigma function.
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Ideas of proof

" K Ao + 2K’ , Ao + 2K + 2iK'
—2K +2iK' 2iK’

2K + 2iK’
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Interesting questions

e Soliton gas analysis.
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Interesting questions

e Soliton gas analysis.
® Rogue waves of infinite order.
® Zero dispersion limit.

® Approximation theory on the torus with the goal to optimize
numerical computation of singular integrals of type

2K

/f(u)C(u,A —i0)dp

0

for

Cli, A) = ¢ = A) = C( = iK') + (A = K —iK') + ((K),

and ((.) is the Weierstrass (-function.
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