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Overview

1 Landau-Lifshitz was introduced as a model for dynamical
magnetic anisotropic interaction [LL35].

2 The Lax pair for it was constructed in [Skl79]. The spectral
parameter belongs to the torus.

3 Riemann-Hilbert problem was developed in [Rod84].
4 The large time asymptotic of fast decaying initial data was

computed on the physical level in [BI88].
5 The solitons and breathers were constructed in [Bob83].
6 Whitham modulation theory was developed in [IKCP17].
7 Our goal is to establish large time asymptotics of fast decaying

initial data on the mathematical level.
8 The talk is based on [DIP25].
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Model description

• Landau-Lifshitz model is the anisotropic model of magnetic
waves.

• We consider the continuous spin chain. Denote spin taking
values on the unit sphere as

S(x , t), x ∈ R, t ∈ R+,

3∑

j=1

S2
j = 1.

• We assume the boundary condition

S → (0, 0, 1), x → ±∞
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Model description

• Landau-Lifshitz equation describes the dynamics

∂S

∂t
= S × ∂2S

∂x2 + S × JS

• Here J describes the anisotropy of spin interaction

J =



J1 0 0
0 J2 0
0 0 J3


 , 0 < J1 < J2 < J3.

• Landau-Lifshitz model admits degenerations to the
Sine-Gordon equation when J1 → 0 and to the NLS equation
when J1, J2 → 0.
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Lax pair

• The Lax pair is given by




∂Ψ

∂x
= UΨ

∂Ψ

∂t
= VΨ

, where

U = −i
3∑

j=1

σjSjwj , V = i
3∑

j ,m,n=1
j ̸=m ̸=n

σjSjwmwn + i
3∑

j=1

σjPjwj

Pj =

(
∂S

∂x
× S

)

j

σj are Pauli matrices and parameters wj solve algebraic system

w2
i − w2

j =
1
4
(Jj − Ji ); i , j = 1, 2, 3
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Elliptic parametrization

• The parameters wj admit parametrization using elliptic
functions

w1 = ρ
1

sn(λ, k)
, w2 = ρ

dn(λ, k)
sn(λ, k)

, w3 = ρ
cn(λ, k)
sn(λ, k)

.

ρ =

√
J3 − J1

2
, k =

√
J2 − J1

J3 − J1
– elliptic modulus.

where

λ ∈ T2 =
{
λ : |Re(λ)| ≤ 2K , |Im(λ)| ≤ 2K ′}

and K , K ′ are complete elliptic integrals.
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Jost solution

• We assume "fast decaying" and smooth initial conditions

S |t=0 − (0, 0, 1) ∈ S(R)

where S(R) is the Schwartz class.

• We define Jost solutions that satisfy the differential equation

∂F±
∂x

(λ, x) = U(λ, x)F±(λ, x), U(λ, x) = −i
3∑

j=1

σjSj(x)wj(λ)

and the boundary conditions

F±(λ, x) ∼ e−iw3(λ)xσ3 , , x → ±∞
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Symmetries

• The following shift properties hold

w1(λ+ 2K ) = −w1(λ), w1(λ+ 2iK ′) = w1(λ),

w2(λ+ 2K ) = −w2(λ), w2(λ+ 2iK ′) = −w2(λ),

w3(λ+ 2K ) = w3(λ), w3(λ+ 2iK ′) = −w3(λ),

• They imply the symmetries of coefficient matrix

σ3U(λ+ 2K , x)σ3 = U(λ, x), σ1U(λ+ 2iK ′, x)σ1 = U(λ, x).

• and the symmetries of Jost solutions

σ3F±(λ+ 2K , x)σ3 = F±(λ, x), σ1F±(λ+ 2iK ′, x)σ1 = F∓(λ, x).
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Scattering data

• By taking the ratio of Jost solutions we define the scattering
matrix

S(λ) = (F−(λ, x))
−1 F+(λ, x) =

(
a(λ) −b(λ)
b(λ) a(λ)

)
.

• The reflection coefficient is given by

r(λ) =
b(λ)
a(λ)

.

• We make the following transformation

Υ±(λ, x) = F±(λ, x)eixw3(λ)σ3 =
(
υ
(1)
± (λ, x), υ

(2)
± (λ, x)

)
.
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Analytical properties of Jost solutions

• Let us denote

Ω+ =
{
λ : 0 ≤ Im(λ) ≤ 2K ′; |Reλ| ≤ 2K

}
,

Ω− =
{
λ : −2K ′ ≤ Im(λ) ≤ 0; |Reλ| ≤ 2K

}
,

Γ1 = {λ ∈ T2 : Im(λ) = 0}
Γ2 = {λ ∈ T2 : Im(λ) = 2K ′}

2K−2K
Γ1

Γ2

−2iK ′

2iK ′

Ω+

Ω−
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Analytical properties of Jost solutions

Lemma 1 ([Rod84])
The functions υ

(1)
± (λ, x), υ(2)∓ (λ, x) are analytic in the domains Ω±

and bounded in the domains Ω± respectively. In addition
υ
(1)
± (λ, x), υ(2)± (λ, x) ∈ C∞(Γ1).

Ideas of the proof:

• Functions υ
(1)
± (λ, x) satisfy integral equations.

• The kernel involves eiw3(λ)(x−y)

• The function Im(w3(λ)) does not change sign in Ω±

−∞ < Im(w3(λ)) ≤ 0 for λ ∈ Ω+;

0 ≤ Im(w3(λ)) < ∞ for λ ∈ Ω−.

• Singularity of w3(λ) at λ = 0 needs to be taken care of
separately. It is done using AKNS equation approximation for
such λ
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Convenient formulas for scattering data

Lemma 2
The functions a(λ), b(λ) admit two alternative expressions.

1 They can be written as the integrals
(

a(λ)
b(λ)

)
=

(
1
0

)
+

∫ ∞

−∞
e−i(1−σ3)w3(λ)τ (U(λ, τ) + iw3(λ)σ3)

× υ
(1)
− (λ, τ)dτ.

2 They can also be expressed as the following determinants

a(λ) = det(υ
(1)
+ (λ, x), υ

(2)
− (λ, x)),

b(λ) = e2iw3(λ)x det(υ
(1)
− (λ, x), υ

(1)
+ (λ, x)).
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Reflection coefficient properties

Lemma 3
Under the soliton free assumption, a(λ) ̸= 0 the reflection
coefficient r(λ) corresponding to the initial data from the Schwartz
class satisfies

1 r(λ) ∈ C∞(Γ1 ∪ Γ2)

2 r(λ+ 2K ) = −r(λ)

3 r(λ+ 2iK ′) = −r(λ̄)
4 r(0) = 0

5
dnr(λ)
dλn = O(λm), λ → 0, ∀n,m ∈ N.
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Ideas of the proof

• Symmetry properties follow from symmetry properties of Jost
solutions.

• Smoothness follows from the second representation in terms of
determinant.

• Behavior at zero is derived through the asymptotic analysis of
the first representation in terms of integral. AKNS
approximation near λ = 0 is needed again.
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Riemann-Hilbert problem for the initial condition

• Introduce the following functions

Y+(λ, x) =

(
υ
(1)
+ (λ, x)

a(λ)
, υ

(2)
− (λ, x)

)
,

Y−(λ, x) =

(
υ
(1)
− (λ, x),

υ
(2)
+ (λ, x)

a(λ)

)
,

• Define the piecewise analytic function

Y (λ, x) =

{
Y+(λ, x), λ ∈ Ω+,

Y−(λ, x), λ ∈ Ω−.
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Riemann-Hilbert problem for the initial condition

Riemann-Hilbert problem 1.
1 The function Y (λ, x) is bounded, doubly periodic, and

piecewise analytic for λ ∈ T2/(Γ1 ∪ Γ2). Orientation of the
contours Γ1, Γ2 is as specified below.

2K−2K
Γ1

Γ2

−2iK ′

2iK ′

+

−

+

−
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Riemann-Hilbert problem for the initial condition

2 For λ ∈ Γ1, Γ2, the following jump condition holds

Y+(λ, x) = Y−(λ, x)G (λ, x),

G (λ, x) =

(
1 + |r(λ)|2 r(λ)e−2ixw3(λ)

r(λ)e2ixw3(λ) 1

)
.

3 The function Y (λ, x) satisfies the following symmetry
conditions

σ3Y (λ+ 2K , x)σ3 = Y (λ, x), σ1Y (λ+ 2iK ′, x)σ1 = Y (λ, x).

4 Function Y (λ, x) satisfies normalization condition

det(Y (λ, x)) = 1
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Uniqueness

• The problem is not normalized but the symmetries and
determinant conditions still fix the solution up to a sign.

Lemma 1
Solution Y (λ, x) of the RHP 1 is unique up to a sign.
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Riemann-Hilbert problem on the Riemann surfaces

• Considering Riemann-Hilbert problem on the Riemann surfaces
without introduction of extra poles of solution requires
additional solvability conditions.

• This can be seen by looking at Cauchy kernel. For Riemann
surface of genus g the kernel C (µ, λ) fixed by the following
conditions

• C (µ, λ) with respect to λ has pole at µ, at some divisor D of
degree g and zero at some point a.

• C (µ, λ) with respect to µ has pole at λ, at some point a, and
zero at some divisor D.

• The Cauchy transform
∫

Γ

f (µ)C (µ, λ)dµ

has poles at the divisor D with respect λ.
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Riemann-Hilbert problem on the Riemann surfaces

• For the case of torus we take a = K + iK ′ and D = iK ′.

C (µ, λ) = ζ(µ− λ)− ζ(µ− iK ′) + ζ(λ− K − iK ′) + ζ(K ),

where ζ(.) is the Weierstrass ζ-function.

• The periodicity properties:

C (µ+ 4K , λ) = C (µ, λ+ 4K ) = C (µ+ 4iK ′, λ)

= C (µ, λ+ 4iK ′) = C (µ, λ).

• Poles at µ = λ, µ = iK ′, λ = K + iK ′ with residues 1,−1, and
1 respectively.

• Zeros for λ = iK ′, µ = K + iK ′.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 22 / 43



Landau-Lifshitz equation Riemann-Hilbert approach References

Riemann-Hilbert problem on the Riemann surfaces

• For the case of torus we take a = K + iK ′ and D = iK ′.

C (µ, λ) = ζ(µ− λ)− ζ(µ− iK ′) + ζ(λ− K − iK ′) + ζ(K ),

where ζ(.) is the Weierstrass ζ-function.
• The periodicity properties:

C (µ+ 4K , λ) = C (µ, λ+ 4K ) = C (µ+ 4iK ′, λ)

= C (µ, λ+ 4iK ′) = C (µ, λ).

• Poles at µ = λ, µ = iK ′, λ = K + iK ′ with residues 1,−1, and
1 respectively.

• Zeros for λ = iK ′, µ = K + iK ′.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 22 / 43



Landau-Lifshitz equation Riemann-Hilbert approach References

Riemann-Hilbert problem on the Riemann surfaces

• For the case of torus we take a = K + iK ′ and D = iK ′.

C (µ, λ) = ζ(µ− λ)− ζ(µ− iK ′) + ζ(λ− K − iK ′) + ζ(K ),

where ζ(.) is the Weierstrass ζ-function.
• The periodicity properties:

C (µ+ 4K , λ) = C (µ, λ+ 4K ) = C (µ+ 4iK ′, λ)

= C (µ, λ+ 4iK ′) = C (µ, λ).

• Poles at µ = λ, µ = iK ′, λ = K + iK ′ with residues 1,−1, and
1 respectively.

• Zeros for λ = iK ′, µ = K + iK ′.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 22 / 43



Landau-Lifshitz equation Riemann-Hilbert approach References

Riemann-Hilbert problem on the Riemann surfaces

• For the case of torus we take a = K + iK ′ and D = iK ′.

C (µ, λ) = ζ(µ− λ)− ζ(µ− iK ′) + ζ(λ− K − iK ′) + ζ(K ),

where ζ(.) is the Weierstrass ζ-function.
• The periodicity properties:

C (µ+ 4K , λ) = C (µ, λ+ 4K ) = C (µ+ 4iK ′, λ)

= C (µ, λ+ 4iK ′) = C (µ, λ).

• Poles at µ = λ, µ = iK ′, λ = K + iK ′ with residues 1,−1, and
1 respectively.

• Zeros for λ = iK ′, µ = K + iK ′.
Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 22 / 43



Landau-Lifshitz equation Riemann-Hilbert approach References

Riemann-Hilbert problem on the Riemann surfaces

The Riemann-Hilbert problem on the Riemann surfaces appeared in
the following works

• Orthogonal polynomials and Padé approximations
[Ber21, Ber22]

• Calogero-Moser equations [DMDG23, Tak99]
• Finite gap solutions [KT12, MLT12]
• Parametrix construction [DIZ97, Kor04]
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Initial conditions

Theorem 2
Let Y (λ, x) be the solution of the Riemann-Hilbert problem 1 with
r(λ) satisfying properties (1)-(5). Then the function S(x)
constructed from it by formula

Y (0, x)σ3 (Y (0, x))−1 =
3∑

j=1

Sj(x)σj ,

belongs to the Schwartz class: S1(x), S2(x),S3(x)− 1 ∈ S(R), and
it defines the initial data for the LL equation whose reflection
coefficient is given by r(λ).
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Ideas of proof

• Following Deift-Zhou approach, we try to get problem with
jump close to identity.

• Reflection coefficient is split in the sum of analytic term and
term satisfying decay properties using Fourier transform.

• After deformation of the contour the jump is close to identity.
• Consider singular integral equation

χ(λ, x) = 1 +
1

2πi

∫

Γ1∪Γ2

χ(µ, x) (G (µ, x)− 1)C (µ, λ− i0)dµ.

• Nonsymmetric solution of Riemann-Hilbert problem normalized
by Φ(iK ′) is given by

Φ(λ, x) = 1 +
1

2πi

∫

Γ1∪Γ2

χ(µ, x) (G (µ, x)− 1)C (µ, λ)dµ.
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Ideas of proof

• Symmetric solution is constructed by

Y (λ) =
1√
c

(
Φ(λ) + σ3Φ(λ+ 2K )σ3 + σ1Φ(λ+ 2iK ′)σ1

+σ2Φ(λ+ 2K + 2iK ′)σ2
)
,

c =det
(
Φ(λ) + σ3Φ(λ+ 2K )σ3 + σ1Φ(λ+ 2iK ′)σ1+

σ2Φ(λ+ 2K + 2iK ′)σ2
)
.

• Problem: singularity at λ = K + iK ′. It is crucial for us to use
the result of [Rod89] which claims that this singularity is
absent already for Φ(λ, x) based on perturbation approach.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 26 / 43



Landau-Lifshitz equation Riemann-Hilbert approach References

Time evolution

Lemma 3 ([Skl79])
Assume t > 0 is fixed and

S1(x , t),S2(x , t), S3(x , t)− 1 ∈ S(R)

are solutions of LL equation. Denote by F±(λ, x , t) the Jost
solutions corresponding to S(x , t) with t > 0. Then the
matrix-valued functions

J±(λ, x , t) = F±(λ, x , t)e2itw1(λ)w2(λ)σ3

solves equations of Lax pair of LL equation. Moreover the
scattering data depends on time as

a(λ, t) = a(λ), b(λ, t) = b(λ)e−4itw1(λ)w2(λ).
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Riemann-Hilbert problem corresponding to LL dynamics

Riemann-Hilbert problem 2.
1 The function Y (λ, x , t) is bounded and piecewise analytic

for λ ∈ T2/(Γ1 ∪ Γ2).
2 For λ ∈ Γ1, Γ2, the following jump condition holds

Y+(λ, x , t) = Y−(λ, x , t)G (λ, x , t)

G (λ, x , t) =

(
1 + |r(λ)|2 r(λ)e−2itp(λ,κ)

r(λ)e2itp(λ,κ) 1

)
.

where

p(λ,κ) = κw3(λ)− 2w1(λ)w2(λ), κ =
x

t
.
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Riemann-Hilbert problem corresponding to LL dynamics

3 The function Y (λ, x , t) satisfies the following symmetry
conditions

σ3Y (λ+ 2K , x , t)σ3 = Y (λ, x , t),

σ1Y (λ+ 2iK ′, x , t)σ1 = Y (λ, x , t).

4 Function Y (λ, x , t) satisfies normalization condition

det(Y (λ, x , t)) = 1.
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Solution of LL from RHP

Lemma 4
Given Y (λ, x , t) is a solution of the Riemann-Hilbert problem 2 the
function

Ψ(λ, x , t) = Y (λ, x , t)e−itp(λ,κ)σ3

solves Lax pair of LL equation with Sj(x , t) given by

Y (0, x , t)σ3 (Y (0, x , t))−1 =
3∑

j=1

Sj(x , t)σj . (1)
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Main result

Theorem 5 ([DIP25])
Let Y (λ, x , t) be the solution of the Riemann-Hilbert problem 2
with r(λ) satisfying the properties (1)-(5) and let the vector
function S(x , t) be determined by equation (1). Then, S(x , t)
solves the Cauchy problem for the LL equation characterized by the
reflection coefficient r(λ) and for t → ∞, 0 < m ≤ x

t ≤ M,

S1(x , t) =
1
ρ

(
2ν
tφ0

)1/2

w2(λ0) cos θ(x , t) +O(t−
2
3 ),

S2(x , t) =
1
ρ

(
2ν
tφ0

)1/2

w1(λ0) sin θ(x , t) +O(t−
2
3 ),

S3(x , t) = 1 − 1
2
(
S2

1 (x , t) + S2
2 (x , t)

)
+O(t−

7
6 ),
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Parameters

where

θ(x , t) = 2tp(λ0,κ) + ν log t − π

4
− arg Γ(iν) + arg r0 − 2c0+

ν log

(
2φ0

β2
0

)
,

p(λ,κ) = κ w3(λ)− 2w1(λ)w2(λ), κ =
x

t

and the value of the stationary point λ0 ∈ [−2K , 0] is determined
by the equation ∂λp(λ0,κ) = 0. With such λ0, the parameter
φ0 = −∂2

λp(λ0,κ) is obtained from

φ0 =
1
ρ2

(
8w1(λ0)w2(λ0)w

2
3 (λ0)+

(w2
1 (λ0) + w2

2 (λ0))(2w1(λ0)w2(λ0)− κw3(λ0))
)
,
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Parameters

• The remaining terms are determined as follows:

r0 = r(λ0), ν =
1
2π

log(1 + |r0|2).

β(λ) =
σ(λ)σ(λ− 2K )

σ(λ+ 2iK ′)σ(λ− 2iK ′ − 2K )
,

β0 :=
σ(−2K )

σ(2iK ′)σ(−2iK ′ − 2K )
,

c0 =
1
2π

∫ 0

λ0

d
(
log
(
1 + |r(η)|2

))
log β(η − λ0),

where σ(λ) denotes the Weierstrass sigma function.
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Ideas of proof

−2K

λ0

0

L̃

Ũ

U

D

L

T2(λ0)

M2

M1

M3

M4

λ0 + 2K

2K

λ0 + 2K + 2iK ′

2K + 2iK ′

λ0 + 2iK ′
2iK ′−2K + 2iK ′

λ0 − 2iK ′−2K − 2iK ′ −2iK ′
λ0 − 2K − 2iK ′ −2K − 2iK ′
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Interesting questions

• Soliton gas analysis.

• Rogue waves of infinite order.
• Zero dispersion limit.
• Approximation theory on the torus with the goal to optimize

numerical computation of singular integrals of type

2K∫

0

f (µ)C (µ, λ− i0)dµ

for

C (µ, λ) = ζ(µ− λ)− ζ(µ− iK ′) + ζ(λ− K − iK ′) + ζ(K ),

and ζ(.) is the Weierstrass ζ-function.
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