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Inverse scattering method

• The inverse scattering method has a rich history. It started
with the works of Gelfand-Levitan and Marchenko in 1950s on
reconstruction of the potential of the Schrödinger equation
based on the scattering data

• The major breakthrough was the work of Gardner, Greene,
Kruscal and Miura. They showed that the nonlinear
Korteweg–De Vries (KdV) dynamic for the potential of
Schrödinger equation transforms to linear dynamic for the
scattering data.
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Other integrable models

• In the later years many more models fitting to the inverse
scattering framework were discovered (see [FT07]):

• Nonlinear Schrödinger equation
• Sine-Gordon equation
• Continuous Heisenberg magnet.
• Landau-Lifshitz model.
• Toda equation
• Boussinesq equation
• Kadomtsev-Petviashvili equation
• . . .
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Riemann-Hilbert problems

• Besides the original Gelfand-Levitan-Marchenko equations for
relaization of the inverse scattering, there is a Riemann-Hilbert
approach.

• Following the breakthrough work [DZ93], the school of
asymptotic analysis of the Riemann-Hilbert problems was
developed.

• The focus of our work is to implement this analysis for the
case of Landau-Lifshitz equation.

• The difficulty here is the setup of the problem: usually
Riemann-Hilbert problems are concerned with analytic
functions on Riemann sphere as the starting point, but in our
case we have to start from the torus.

• In the next slides we will talk about the Heisenberg magnet
(HM) model which is a simplified version of Landau-Lifshitz
(LL) model.
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Classical Heisenberg magnetism model

• The classical model for magnetism was introduced by
Heisenberg. It is described by the following Hamiltonian

H = −
∑
k∼j

S (k) · S (j)

where the classical spin vectors S (k) ∈ S2 are located at some
lattice sites k and the sum

∑
k∼j runs over nearest-neighbor

pairs in the lattice.

• The interpretation of the Hamiltonian is the energy of the
system of classical spins. They tend to align with each other
to minimize the energy.
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Classical Heisenberg magnetic chain

• Consider special case of classical spins located on the integer
lattice Z.

• Impose the boundary condition

S (n) → (0, 0, 1), n → ±∞

where the convergence is sufficiently fast.
• The Hamiltonian needs to be regularized and it takes form

H = −2
∑
n∈Z

log

(
1 + S (n) · S (n+1)

2

)
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Magnetic waves

• It is possible to consider the dynamics of classical spins after
introduction of convenient Poisson bracket

{S (n)
a , S

(m)
b } = −εabcδmnS

(n)
c

where δnm is the Kronecker symbol and εabc is the Levi-Cevita
symbol.

• The evolution is then described by the equation

∂S (n)

∂t
= {H,S (n)}

• More explicitly it takes form

∂S (n)

∂t
= 2S (n) ×

(
S (n+1)

1 + S (n) · S (n+1) +
S (n−1)

1 + S (n) · S (n−1)

)
,

where × denotes the vector product.
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Continuous Heisenberg magnetic chain

• We would like to take continuum limit by choosing x = nε,
S(x) = ε−1S (n).

• As the result we obtain the continuous spin chain. Its
evolution equation is given by

∂S

∂t
= S × ∂2S

∂x2 , x ∈ R.

• As it was mentioned earlier, this nonlinear system of PDEs is
amenable to the inverse scattering procedure, see [FT07].

• The effective indicator of the possibility of an inverse
scattering transform for the nonlinear PDE is the presence of
Lax pair representation. It can be interpreted as a linearization
of the equation.
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Lax pair for the continuous Heisenberg magnet (HM)

• To describe the Lax pair we need to introduce

L =
3∑

j=1

Sjσj

where the Pauli matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

• The evolution in terms of matrix L is given by

∂L

∂t
=

1
2i

[
L,
∂2L

∂x2

]
(1)

L → σ3, as x → ±∞
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Lax pair for the continuous Heisenberg magnet (HM)

• The Lax pair for the HM model is given by linear systems of
ODEs 

∂Φ

∂x
= iλLΦ

∂Φ

∂t
=

(
2iλ2L+ λL

∂L

∂x

)
Φ

, (1)

where λ ∈ C is a spectral parameter.

• The time evolution (1) of matrix L is the compatibility
condition (zero curvature) condition associated to the Lax pair
(1) under the assumption L2 = 1.

∂

∂t
(iλL)− ∂

∂x

(
2iλ2L+ λL

∂L

∂x

)
+

[
iλL, 2iλ2L+ λL

∂L

∂x

]
= 0
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Connection to the nonlinear Schrödinger equation (NLS)

• HM model has direct connection to the very well known
model, focusing nonlinear Schrödinger equation. It is given by

i
∂ψ

∂t
+
∂2ψ

∂x2 + 2|ψ|2ψ = 0.

where ψ is a scalar function.

• The Lax pair for nonlinear Schrödinger equation is given by
∂Ψ

∂x
= (iλσ3 + A)Ψ

∂Ψ

∂t
=
(
2iλ2σ3 + 2λA+ i|ψ|2σ3 + B

)
Ψ

,

where A = i
(

0 ψ
ψ 0

)
, B =

 0
∂ψ

∂x

−∂ψ
∂x

0

 , λ ∈ C.
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Connection to the nonlinear Schrödinger equation (NLS)

• To establish the connection between HM and NLS models one
can notice that

tr(L) = 0, L2 = 1, L∗ = L.

• It implies that there is a unitary matrix g such that
L = gσ3g

−1.
• It was established in [ZT79] that after proper choice of g the

functions Φ and Ψ are related by Φ = gΨ. Moreover,

g−1∂g

∂x
= i
(

0 ψ
ψ 0

)
.

• As the result we observed that HM is equivalent to NLS and
does not represent new model.
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Landau-Lifshitz model

• Landau-Lifshitz model is the anisotropic generalization of HM.

• We introduce the anisotropy in spin interaction

H = −
∑
n∈Z

log(1 − J3 + JS (n) · S (n+1))

J =

J1 0 0
0 J2 0
0 0 J3

 , 0 < J1 < J2 < J3.

• Landau-Lifshitz equation is obtained in the continuous limit of
properly modified lattice model

∂S

∂t
= S × ∂2S

∂x2 + S × JS ,
3∑

j=1

S2
j = 1

S → (0, 0, 1), x → ±∞
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• We introduce the anisotropy in spin interaction

H = −
∑
n∈Z

log(1 − J3 + JS (n) · S (n+1))

J =

J1 0 0
0 J2 0
0 0 J3

 , 0 < J1 < J2 < J3.

• Landau-Lifshitz equation is obtained in the continuous limit of
properly modified lattice model

∂S

∂t
= S × ∂2S

∂x2 + S × JS ,
3∑

j=1

S2
j = 1

S → (0, 0, 1), x → ±∞
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Lax pair

• The Lax pair is given by
∂Ψ

∂x
= UΨ

∂Ψ

∂t
= VΨ

, where

U = −i
3∑

j=1

σjSjwj , V = 2i
3∑

j ,m,n=1
j ̸=m ̸=n

σjSjwmwn + i
3∑

j=1

σjPjwj ,

Pj =

(
∂S

∂x
× S

)
j

w1 = ρ
1

sn(λ, k)
, w2 = ρ

dn(λ, k)
sn(λ, k)

, w3 = ρ
cn(λ, k)
sn(λ, k)

.

ρ =

√
J3 − J1

2
, k =

√
J2 − J1

J3 − J1
– elliptic modulus.
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Features

• The key difference from the Heisenberg magnet is that the
spectral parameter now belongs to the torus.

λ ∈ T2 =
{
λ : |Re(λ)| ≤ 2K , |Im(λ)| ≤ 2K ′}

where K and K ′ are complete elliptic integrals.

• Landau-Lifshitz model admits degenerations to the
Sine-Gordon equation when J1 → 0 and to the NLS equation
when J1, J2 → 0.

• The Lax pair for the Landau-Lifshitz equation was found in
[Skl79].

• In the next slides we will go over the inverse scattering method
in more details.
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Jost solution

• We remind the idea of the inverse scattering method: the
dynamic is easier on the level of scattering data. Our first step
is to establish scattering data corresponding to the initial
conditions.

• We assume "fast decaying" and smooth initial conditions

S |t=0 − (0, 0, 1) ∈ S(R)
where S(R) is the Schwartz class.

• That implies that all solutions of equation

∂Ψ

∂x
(λ, x) = U(λ, x)Ψ(λ, x), U(λ, x) = −i

3∑
j=1

σjSj(x)wj(λ)

behave like planar waves for x → ±∞ up to constant factor.
• We fix two solutions called Jost solutions

F±(λ, x) ∼ e−iw3(λ)xσ3 , , x → ±∞

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 20 / 44



Introduction Heisenberg magnet model Landau-Lifshitz model Riemann-Hilbert approach References

Jost solution

• We remind the idea of the inverse scattering method: the
dynamic is easier on the level of scattering data. Our first step
is to establish scattering data corresponding to the initial
conditions.

• We assume "fast decaying" and smooth initial conditions

S |t=0 − (0, 0, 1) ∈ S(R)
where S(R) is the Schwartz class.

• That implies that all solutions of equation

∂Ψ

∂x
(λ, x) = U(λ, x)Ψ(λ, x), U(λ, x) = −i

3∑
j=1

σjSj(x)wj(λ)

behave like planar waves for x → ±∞ up to constant factor.
• We fix two solutions called Jost solutions

F±(λ, x) ∼ e−iw3(λ)xσ3 , , x → ±∞

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 20 / 44



Introduction Heisenberg magnet model Landau-Lifshitz model Riemann-Hilbert approach References

Jost solution

• We remind the idea of the inverse scattering method: the
dynamic is easier on the level of scattering data. Our first step
is to establish scattering data corresponding to the initial
conditions.

• We assume "fast decaying" and smooth initial conditions

S |t=0 − (0, 0, 1) ∈ S(R)
where S(R) is the Schwartz class.

• That implies that all solutions of equation

∂Ψ

∂x
(λ, x) = U(λ, x)Ψ(λ, x), U(λ, x) = −i

3∑
j=1

σjSj(x)wj(λ)

behave like planar waves for x → ±∞ up to constant factor.

• We fix two solutions called Jost solutions

F±(λ, x) ∼ e−iw3(λ)xσ3 , , x → ±∞

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 20 / 44



Introduction Heisenberg magnet model Landau-Lifshitz model Riemann-Hilbert approach References

Jost solution

• We remind the idea of the inverse scattering method: the
dynamic is easier on the level of scattering data. Our first step
is to establish scattering data corresponding to the initial
conditions.

• We assume "fast decaying" and smooth initial conditions

S |t=0 − (0, 0, 1) ∈ S(R)
where S(R) is the Schwartz class.

• That implies that all solutions of equation

∂Ψ

∂x
(λ, x) = U(λ, x)Ψ(λ, x), U(λ, x) = −i

3∑
j=1

σjSj(x)wj(λ)

behave like planar waves for x → ±∞ up to constant factor.
• We fix two solutions called Jost solutions

F±(λ, x) ∼ e−iw3(λ)xσ3 , , x → ±∞
Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 20 / 44



Introduction Heisenberg magnet model Landau-Lifshitz model Riemann-Hilbert approach References

Symmetries

• The following shift properties hold

w1(λ+ 2K ) = −w1(λ), w1(λ+ 2iK ′) = w1(λ),

w2(λ+ 2K ) = −w2(λ), w2(λ+ 2iK ′) = −w2(λ),

w3(λ+ 2K ) = w3(λ), w3(λ+ 2iK ′) = −w3(λ),

• They imply the symmetries of coefficient matrix

σ3U(λ+ 2K , x)σ3 = U(λ, x), σ1U(λ+ 2iK ′, x)σ1 = U(λ, x).

• and the symmetries of Jost solutions

σ3F±(λ+ 2K , x)σ3 = F±(λ, x), σ1F±(λ+ 2iK ′, x)σ1 = F∓(λ, x).
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Scattering data

• By taking the ratio of Jost solutions we define the scattering
matrix

S(λ) = (F−(λ, x))
−1 F+(λ, x) =

(
a(λ) −b(λ)
b(λ) a(λ)

)
.

• This formula suggests that the properties of scattering matrix
are derived from the properties of Jost solutions.

• To construct the Jost solutions we would need to make the
following transformation

Υ±(λ, x) = F±(λ, x)eixw3(λ)σ3 =
(
υ
(1)
± (λ, x), υ

(2)
± (λ, x)

)
.

• The result solves integral equation
∂Υ±
∂x

(λ, x) = U(λ, x)Υ±(λ, x) + iw3(λ)Υ±(λ, x)σ3,
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Construction of Jost solutions

Lemma 1 ([Rod84])
The solutions υ̂(j)± (λ, x) of the integral equations

υ̂
(1)
± (λ, x) =

(
1
0

)
+

∫ x

±∞
ei(1−σ3)w3(λ)(x−τ) (U(λ, τ) + iw3(λ)σ3)

× υ̂
(1)
± (λ, τ)dτ,

υ̂
(2)
± (λ, x) =

(
0
1

)
+

∫ x

±∞
e−i(1+σ3)w3(λ)(x−τ) (U(λ, τ) + iw3(λ)σ3)

× υ̂
(2)
± (λ, τ)dτ,

coincide with functions υ(j)± (λ, x) introduced earlier.
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Analytical properties of Jost solutions

• Let us denote

Ω+ =
{
λ : 0 ≤ Im(λ) ≤ 2K ′; |Reλ| ≤ 2K

}
,

Ω− =
{
λ : −2K ′ ≤ Im(λ) ≤ 0; |Reλ| ≤ 2K

}
,

Γ1 = {λ ∈ T2 : Im(λ) = 0}
Γ2 = {λ ∈ T2 : Im(λ) = 2K ′}

Lemma 2 ([Rod84])
The functions υ(1)± (λ, x), υ(2)∓ (λ, x) are analytic in the domains Ω±
and bounded in the domains Ω± respectively. In addition
υ
(1)
± (λ, x), υ(2)± (λ, x) ∈ C∞(Γ1).
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Convenient formulas for scattering data

Lemma 3
The functions a(λ), b(λ) admit two alternative expressions.

1 They can be written as the integrals(
a(λ)
b(λ)

)
=

(
1
0

)
+

∫ ∞

−∞
e−i(1−σ3)w3(λ)τ (U(λ, τ) + iw3(λ)σ3)

× υ
(1)
− (λ, τ)dτ.

2 They can also be expressed as the following determinants

a(λ) = det(υ
(1)
+ (λ, x), υ

(2)
− (λ, x)),

b(λ) = e2iw3(λ)x det(υ
(1)
− (λ, x), υ

(1)
+ (λ, x)).
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Reflection coefficient

• We introduce the reflection coefficient

r(λ) =
b(λ)
a(λ)

.

• Given the reflection coefficient, one can recover both b(λ) and
a(λ) using formula

a(λ) = exp

{
− 1

2πi

∫ 0

−2K
log
(
1 + |r(η)|2

) w3(η − λ)

ρ
dη

}
, λ ∈ Ω+.

• Function w3(η−λ)
ρ plays role of Cauchy kernel. It has simple

pole with residue 1 at zero.
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Reflection coefficient properties

Lemma 4
Under the soliton free assumption, a(λ) ̸= 0 the reflection
coefficient r(λ) corresponding to the initial data from the Schwartz
class satisfies

1 r(λ) ∈ C∞(Γ1 ∪ Γ2)

2 r(λ+ 2K ) = −r(λ)

3 r(λ+ 2iK ′) = −r(λ̄)
4 r(0) = 0

5
dnr(λ)
dλn = O(λm), λ→ 0, ∀n,m ∈ N.
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Riemann-Hilbert problem

• Introduce the following functions

Y+(λ, x) =

(
υ
(1)
+ (λ, x)

a(λ)
, υ

(2)
− (λ, x)

)
,

Y−(λ, x) =

(
υ
(1)
− (λ, x),

υ
(2)
+ (λ, x)

a(λ)

)
,
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Riemann-Hilbert problem

Riemann-Hilbert problem 1.
1 The function Y (λ, x) is bounded, doubly periodic, and

piecewise analytic for λ ∈ T2/(Γ1 ∪ Γ2). Orientation of the
contours Γ1, Γ2 is as specified below.

2K−2K
Γ1

Γ2

−2iK ′

2iK ′

+

−

+

−

Figure 1: Contours Γ1 and Γ2.
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Riemann-Hilbert problem

2 For λ ∈ Γ1, Γ2, the following jump condition holds

Y+(λ, x) = Y−(λ, x)G (λ, x),

G (λ, x) =

(
1 + |r(λ)|2 r(λ)e−2ixw3(λ)

r(λ)e2ixw3(λ) 1

)
.

3 The function Y (λ, x) satisfies the following symmetry
conditions

σ3Y (λ+ 2K , x)σ3 = Y (λ, x), σ1Y (λ+ 2iK ′, x)σ1 = Y (λ, x).

4 Function Y (λ, x) satisfies normalization condition

det(Y (λ, x)) = 1
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Uniqueness

Lemma 1
Solution Y (λ, x) of the RHP 1 is unique up to a sign.

Theorem 2
Let Y (λ, x) be the solution of the Riemann-Hilbert problem 1 with
r(λ) satisfying properties (1)-(5). Then the function S(x)
constructed from it by formula

Y (0, x)σ3 (Y (0, x))−1 =
3∑

j=1

Sj(x)σj ,

belongs to the Schwartz class: S1(x), S2(x), S3(x)− 1 ∈ S(R), and
it defines the initial data for the LL equation whose reflection
coefficient is given by r(λ).
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Time evolution

Lemma 3 ([Skl79])
Assume t > 0 is fixed and

S1(x , t),S2(x , t), S3(x , t)− 1 ∈ S(R)

are solutions of LL equation. Denote by F±(λ, x , t) the Jost
solutions corresponding to S(x , t) with t > 0. Then the
matrix-valued functions

J±(λ, x , t) = F±(λ, x , t)e2itw1(λ)w2(λ)σ3

solves equations of Lax pair of LL equation. Moreover the
scattering data depends on time as

a(λ, t) = a(λ), b(λ, t) = b(λ)e−4itw1(λ)w2(λ).
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Riemann-Hilbert problem corresponding to LL dynamics

Riemann-Hilbert problem 2.
1 The function Y (λ, x , t) is bounded and piecewise analytic

for λ ∈ T2/(Γ1 ∪ Γ2).
2 For λ ∈ Γ1, Γ2, the following jump condition holds

Y+(λ, x , t) = Y−(λ, x , t)G (λ, x , t)

G (λ, x , t) =

(
1 + |r(λ)|2 r(λ)e−2itp(λ,κ)

r(λ)e2itp(λ,κ) 1

)
.

where

p(λ,κ) = κw3(λ)− 2w1(λ)w2(λ), κ =
x

t
.
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Riemann-Hilbert problem corresponding to LL dynamics

3 The function Y (λ, x , t) satisfies the following symmetry
conditions

σ3Y (λ+ 2K , x , t)σ3 = Y (λ, x , t), σ1Y (λ+ 2iK ′, x , t)σ1 = Y (λ, x , t).

4 Function Y (λ, x , t) satisfies normalization condition

det(Y (λ, x , t)) = 1.
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Solution of LL from RHP

Lemma 4
Given Y (λ, x , t) is a solution of the Riemann-Hilbert problem 2 the
function

Ψ(λ, x , t) = Y (λ, x , t)e−itp(λ,κ)σ3

solves Lax pair of LL equation with Sj(x , t) given by

Y (0, x , t)σ3 (Y (0, x , t))−1 =
3∑

j=1

Sj(x , t)σj . (1)
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Main result

Theorem 5 ([?])
Let Y (λ, x , t) be the solution of the Riemann-Hilbert problem 2
with r(λ) satisfying the properties (1)-(5) and let the vector
function S(x , t) be determined by equation (1). Then, S(x , t)
solves the Cauchy problem for the LL equation characterized by the
reflection coefficient r(λ) and for t → ∞, 0 < m ≤ x

t ≤ M,

S1(x , t) =
1
ρ

(
2ν
tφ0

)1/2

w2(λ0) cos θ(x , t) +O(t−
2
3 ),

S2(x , t) =
1
ρ

(
2ν
tφ0

)1/2

w1(λ0) sin θ(x , t) +O(t−
2
3 ),

S3(x , t) = 1 − 1
2
(
S2

1 (x , t) + S2
2 (x , t)

)
+O(t−

7
6 ),
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Parameters

where

θ(x , t) = 2tp(λ0,κ) + ν log t − π

4
− arg Γ(iν) + arg r0 − 2c0+

ν log

(
2φ0

β2
0

)
,

p(λ,κ) = κ w3(λ)− 2w1(λ)w2(λ), κ =
x

t

and the value of the stationary point λ0 ∈ [−2K , 0] is determined
by the equation ∂λp(λ0,κ) = 0. With such λ0, the parameter
φ0 = −∂2

λp(λ0,κ) is obtained from

φ0 =
1
ρ2

(
8w1(λ0)w2(λ0)w

2
3 (λ0)+

(w2
1 (λ0) + w2

2 (λ0))(2w1(λ0)w2(λ0)− κw3(λ0))
)
,
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Parameters

• The remaining terms are determined as follows:

r0 = r(λ0), ν =
1
2π

log(1 + |r0|2).

β(λ) =
σ(λ)σ(λ− 2K )

σ(λ+ 2iK ′)σ(λ− 2iK ′ − 2K )
,

β0 :=
σ(−2K )

σ(2iK ′)σ(−2iK ′ − 2K )
,

c0 =
1
2π

∫ 0

λ0

d
(
log
(
1 + |r(η)|2

))
log β(η − λ0),

where σ(λ) denotes the Weierstrass sigma function.
• This result was obtained in [BI88] with much lower level of

rigor.
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Future work

• Soliton gas analysis for the LL equation.
• Rogue waves of infinite order.
• Approximation theory on the torus with the goal to optimize

numerical computation of singular integrals of type

2K∫
0

f (µ)C (µ, λ− i0)dµ

where

C (µ, λ) := ζ(µ− λ)− ζ(µ− iK ′) + ζ(λ− K − iK ′) + ζ(K ),

and ζ(.) is the Weierstrass ζ-function.
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