Landau-Lifshitz model

Riemann-Hilbert approach

References

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation.

Andrei Prokhorov Joint work with Alexander Its and Harini Desiraju

Department of Statistics, University of Chicago & Saint-Petersburg State University

February, 2025

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

- 2 Heisenberg magnet model
- 3 Landau-Lifshitz model
- **4** Riemann-Hilbert approach
- **5** References

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

- 2 Heisenberg magnet model
- 3 Landau-Lifshitz model
- 4 Riemann-Hilbert approach
- **6** References

- ・ロト・(四ト・(日ト・日) つへぐ

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Inverse scattering method

• The inverse scattering method has a rich history. It started with the works of Gelfand-Levitan and Marchenko in 1950s on reconstruction of the potential of the Schrödinger equation based on the scattering data

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Inverse scattering method

0000

- The inverse scattering method has a rich history. It started with the works of Gelfand-Levitan and Marchenko in 1950s on reconstruction of the potential of the Schrödinger equation based on the scattering data
- The major breakthrough was the work of Gardner, Greene, Kruscal and Miura. They showed that the nonlinear Korteweg–De Vries (KdV) dynamic for the potential of Schrödinger equation transforms to linear dynamic for the scattering data.

Other integrable models

- In the later years many more models fitting to the inverse scattering framework were discovered (see [FT07]):
 - Nonlinear Schrödinger equation
 - Sine-Gordon equation
 - Continuous Heisenberg magnet.
 - Landau-Lifshitz model.
 - Toda equation
 - Boussinesq equation
 - Kadomtsev-Petviashvili equation
 - . . .

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Andrei Prokhorov

Heisenberg magnet model

Landau-Lifshitz model

Riemann-Hilbert approach

References

Riemann-Hilbert problems

• Besides the original Gelfand-Levitan-Marchenko equations for relaization of the inverse scattering, there is a Riemann-Hilbert approach.

Department of Statistics, University of Chicago & Saint-Petersburg State University

- Besides the original Gelfand-Levitan-Marchenko equations for relaization of the inverse scattering, there is a Riemann-Hilbert approach.
- Following the breakthrough work [DZ93], the school of asymptotic analysis of the Riemann-Hilbert problems was developed.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

- Besides the original Gelfand-Levitan-Marchenko equations for relaization of the inverse scattering, there is a Riemann-Hilbert approach.
- Following the breakthrough work [DZ93], the school of asymptotic analysis of the Riemann-Hilbert problems was developed.
- The focus of our work is to implement this analysis for the case of Landau-Lifshitz equation.

- Besides the original Gelfand-Levitan-Marchenko equations for relaization of the inverse scattering, there is a Riemann-Hilbert approach.
- Following the breakthrough work [DZ93], the school of asymptotic analysis of the Riemann-Hilbert problems was developed.
- The focus of our work is to implement this analysis for the case of Landau-Lifshitz equation.
- The difficulty here is the setup of the problem: usually Riemann-Hilbert problems are concerned with analytic functions on Riemann sphere as the starting point, but in our case we have to start from the torus.

- Besides the original Gelfand-Levitan-Marchenko equations for relaization of the inverse scattering, there is a Riemann-Hilbert approach.
- Following the breakthrough work [DZ93], the school of asymptotic analysis of the Riemann-Hilbert problems was developed.
- The focus of our work is to implement this analysis for the case of Landau-Lifshitz equation.
- The difficulty here is the setup of the problem: usually Riemann-Hilbert problems are concerned with analytic functions on Riemann sphere as the starting point, but in our case we have to start from the torus.
- In the next slides we will talk about the Heisenberg magnet (HM) model which is a simplified version of Landau-Lifshitz (LL) model.

Department of Statistics, University of Chicago & Saint-Petersburg State University

- 2 Heisenberg magnet model
- 3 Landau-Lifshitz model
- 4 Riemann-Hilbert approach
- **6** References

- ・ロト ・団ト ・ヨト ・ヨー うくぐ

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

• The classical model for magnetism was introduced by Heisenberg. It is described by the following Hamiltonian

$$H = -\sum_{k\sim j} S^{(k)} \cdot S^{(j)}$$

where the classical spin vectors $S^{(k)} \in \mathbb{S}^2$ are located at some lattice sites k and the sum $\sum_{k \sim j}$ runs over nearest-neighbor pairs in the lattice.

Department of Statistics. University of Chicago & Saint-Petersburg State University

Andrei Prokhorov

• The classical model for magnetism was introduced by Heisenberg. It is described by the following Hamiltonian

$$H = -\sum_{k\sim j} S^{(k)} \cdot S^{(j)}$$

where the classical spin vectors $S^{(k)} \in \mathbb{S}^2$ are located at some lattice sites k and the sum $\sum_{k \sim j}$ runs over nearest-neighbor pairs in the lattice.

• The interpretation of the Hamiltonian is the energy of the system of classical spins. They tend to align with each other to minimize the energy.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References

Classical Heisenberg magnetic chain

• Consider special case of classical spins located on the integer lattice \mathbb{Z} .

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Classical Heisenberg magnetic chain

Andrei Prokhorov

- Consider special case of classical spins located on the integer lattice $\mathbb Z.$
- Impose the boundary condition

$$S^{(n)}
ightarrow (0,0,1), \quad n
ightarrow \pm \infty$$

where the convergence is sufficiently fast.

Department of Statistics. University of Chicago & Saint-Petersburg State University

9 / 44

Classical Heisenberg magnetic chain

- Consider special case of classical spins located on the integer lattice \mathbb{Z} .
- Impose the boundary condition

$$S^{(n)}
ightarrow (0,0,1), \quad n
ightarrow \pm \infty$$

where the convergence is sufficiently fast.

The Hamiltonian needs to be regularized and it takes form

$$H = -2\sum_{n\in\mathbb{Z}} \log\left(rac{1+S^{(n)}\boldsymbol{\cdot}S^{(n+1)}}{2}
ight)$$

Andrei Prokhorov

Department of Statistics. University of Chicago & Saint-Petersburg State University

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References
N.4				

Magnetic waves

Andrei Prokhorov

• It is possible to consider the dynamics of classical spins after introduction of convenient Poisson bracket

$$\{S_a^{(n)}, S_b^{(m)}\} = -\varepsilon_{abc}\delta_{mn}S_c^{(n)}$$

where $\delta_{\textit{nm}}$ is the Kronecker symbol and $\varepsilon_{\textit{abc}}$ is the Levi-Cevita symbol.

Department of Statistics, University of Chicago & Saint-Petersburg State University

Introduction Heisenberg magnet model Landau-Lifshitz model Ri

Magnetic waves

• It is possible to consider the dynamics of classical spins after introduction of convenient Poisson bracket

$$\{S_a^{(n)}, S_b^{(m)}\} = -\varepsilon_{abc}\delta_{mn}S_c^{(n)}$$

where δ_{nm} is the Kronecker symbol and ε_{abc} is the Levi-Cevita symbol.

• The evolution is then described by the equation

$$\frac{\partial S^{(n)}}{\partial t} = \{H, S^{(n)}\}$$

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Landau-Lifshitz model Introduction 0000000000

Magnetic waves

 It is possible to consider the dynamics of classical spins after introduction of convenient Poisson bracket

$$\{S_a^{(n)}, S_b^{(m)}\} = -\varepsilon_{abc}\delta_{mn}S_c^{(n)}$$

where δ_{nm} is the Kronecker symbol and ε_{abc} is the Levi-Cevita symbol.

The evolution is then described by the equation

$$\frac{\partial S^{(n)}}{\partial t} = \{H, S^{(n)}\}$$

More explicitly it takes form

$$\frac{\partial S^{(n)}}{\partial t} = 2S^{(n)} \times \left(\frac{S^{(n+1)}}{1 + S^{(n)} \cdot S^{(n+1)}} + \frac{S^{(n-1)}}{1 + S^{(n)} \cdot S^{(n-1)}} \right),$$

where \times denotes the vector product.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet mode

Landau-Lifshitz mode

Riemann-Hilbert approac

References

Continuous Heisenberg magnetic chain

 We would like to take continuum limit by choosing x = nε, S(x) = ε⁻¹S⁽ⁿ⁾.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet mode 000000000 Landau-Lifshitz model

Riemann-Hilbert approach

References

Continuous Heisenberg magnetic chain

- We would like to take continuum limit by choosing x = nε, S(x) = ε⁻¹S⁽ⁿ⁾.
- As the result we obtain the continuous spin chain. Its evolution equation is given by

$$\frac{\partial S}{\partial t} = S \times \frac{\partial^2 S}{\partial x^2}, \quad x \in \mathbb{R}.$$

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet mode 000000000 Landau-Lifshitz model

Riemann-Hilbert approach

References

Continuous Heisenberg magnetic chain

- We would like to take continuum limit by choosing x = nε, S(x) = ε⁻¹S⁽ⁿ⁾.
- As the result we obtain the continuous spin chain. Its evolution equation is given by

$$\frac{\partial S}{\partial t} = S \times \frac{\partial^2 S}{\partial x^2}, \quad x \in \mathbb{R}.$$

• As it was mentioned earlier, this nonlinear system of PDEs is amenable to the inverse scattering procedure, see [FT07].

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 11 / 44

Heisenberg magnet mode 000000000 Landau-Lifshitz model

Riemann-Hilbert approach

References

Continuous Heisenberg magnetic chain

- We would like to take continuum limit by choosing x = nε, S(x) = ε⁻¹S⁽ⁿ⁾.
- As the result we obtain the continuous spin chain. Its evolution equation is given by

$$\frac{\partial S}{\partial t} = S \times \frac{\partial^2 S}{\partial x^2}, \quad x \in \mathbb{R}.$$

- As it was mentioned earlier, this nonlinear system of PDEs is amenable to the inverse scattering procedure, see [FT07].
- The effective indicator of the possibility of an inverse scattering transform for the nonlinear PDE is the presence of Lax pair representation. It can be interpreted as a linearization of the equation.

Department of Statistics, University of Chicago & Saint-Petersburg State University

Lax pair for the continuous Heisenberg magnet (HM)

• To describe the Lax pair we need to introduce

$$L = \sum_{j=1}^{3} S_j \sigma_j$$

where the Pauli matrices are given by

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{array}\right), \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Lax pair for the continuous Heisenberg magnet (HM)

• To describe the Lax pair we need to introduce

$$L = \sum_{j=1}^{3} S_j \sigma_j$$

where the Pauli matrices are given by

$$\sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{array} \right), \quad \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

• The evolution in terms of matrix L is given by

$$\frac{\partial L}{\partial t} = \frac{1}{2i} \left[L, \frac{\partial^2 L}{\partial x^2} \right]$$
$$L \to \sigma_3, \quad \text{as} \quad x \to \pm \infty$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Lax pair for the continuous Heisenberg magnet (HM)

• The Lax pair for the HM model is given by linear systems of ODEs

$$\begin{cases} \frac{\partial \Phi}{\partial x} = i\lambda L\Phi\\ \frac{\partial \Phi}{\partial t} = \left(2i\lambda^2 L + \lambda L \frac{\partial L}{\partial x}\right)\Phi \end{cases}, \tag{1}$$

where $\lambda \in \mathbb{C}$ is a spectral parameter.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University

Lax pair for the continuous Heisenberg magnet (HM)

• The Lax pair for the HM model is given by linear systems of ODEs

$$\begin{cases} \frac{\partial \Phi}{\partial x} = i\lambda L\Phi\\ \frac{\partial \Phi}{\partial t} = \left(2i\lambda^2 L + \lambda L \frac{\partial L}{\partial x}\right)\Phi \end{cases},$$

where $\lambda \in \mathbb{C}$ is a spectral parameter.

The time evolution (1) of matrix L is the compatibility condition (zero curvature) condition associated to the Lax pair (1) under the assumption L² = 1.

$$\frac{\partial}{\partial t}(i\lambda L) - \frac{\partial}{\partial x}\left(2i\lambda^{2}L + \lambda L\frac{\partial L}{\partial x}\right) + \left[i\lambda L, 2i\lambda^{2}L + \lambda L\frac{\partial L}{\partial x}\right] = 0$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Connection to the nonlinear Schrödinger equation (NLS)

 HM model has direct connection to the very well known model, focusing nonlinear Schrödinger equation. It is given by

$$\mathrm{i}\frac{\partial\psi}{\partial t} + \frac{\partial^2\psi}{\partial x^2} + 2|\psi|^2\psi = 0.$$

where ψ is a scalar function.

Connection to the nonlinear Schrödinger equation (NLS)

• HM model has direct connection to the very well known model, focusing nonlinear Schrödinger equation. It is given by

$$\mathrm{i}\frac{\partial\psi}{\partial t} + \frac{\partial^2\psi}{\partial x^2} + 2|\psi|^2\psi = 0.$$

where ψ is a scalar function.

• The Lax pair for nonlinear Schrödinger equation is given by

$$\begin{cases} \frac{\partial \Psi}{\partial x} = (i\lambda\sigma_3 + A)\Psi\\ \frac{\partial \Psi}{\partial t} = (2i\lambda^2\sigma_3 + 2\lambda A + i|\psi|^2\sigma_3 + B)\Psi \end{cases}, \\ \text{where} \quad A = i\begin{pmatrix} 0 & \overline{\psi}\\ \psi & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & \frac{\partial \overline{\psi}}{\partial x}\\ -\frac{\partial \psi}{\partial x} & 0 \end{pmatrix}, \quad \lambda \in \mathbb{C}. \end{cases}$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Connection to the nonlinear Schrödinger equation (NLS)

• To establish the connection between HM and NLS models one can notice that

$$tr(L) = 0, \quad L^2 = \mathbb{1}, \quad L^* = L.$$

Connection to the nonlinear Schrödinger equation (NLS)

• To establish the connection between HM and NLS models one can notice that

$$tr(L) = 0, \quad L^2 = \mathbb{1}, \quad L^* = L.$$

• It implies that there is a unitary matrix g such that $L = g\sigma_3 g^{-1}$.

Connection to the nonlinear Schrödinger equation (NLS)

• To establish the connection between HM and NLS models one can notice that

$$tr(L) = 0, \quad L^2 = 1, \quad L^* = L.$$

- It implies that there is a unitary matrix g such that $L = g\sigma_3 g^{-1}$.
- It was established in [ZT79] that after proper choice of g the functions Φ and Ψ are related by $\Phi = g\Psi$. Moreover,

$$g^{-1}\frac{\partial g}{\partial x} = \mathrm{i} \begin{pmatrix} 0 & \overline{\psi} \\ \psi & 0 \end{pmatrix}.$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Connection to the nonlinear Schrödinger equation (NLS)

• To establish the connection between HM and NLS models one can notice that

$$tr(L) = 0, \quad L^2 = 1, \quad L^* = L.$$

- It implies that there is a unitary matrix g such that $L = g\sigma_3 g^{-1}$.
- It was established in [ZT79] that after proper choice of g the functions Φ and Ψ are related by $\Phi = g\Psi$. Moreover,

$$g^{-1}\frac{\partial g}{\partial x} = \mathrm{i} \begin{pmatrix} 0 & \overline{\psi} \\ \psi & 0 \end{pmatrix}.$$

Department of Statistics. University of Chicago & Saint-Petersburg State University

• As the result we observed that HM is equivalent to NLS and does not represent new model.

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation

Andrei Prokhorov

- 2 Heisenberg magnet model
- 3 Landau-Lifshitz model
- 4 Riemann-Hilbert approach
- **6** References

- ・ロト・(型ト・(型ト・(型ト)) 通っ ろくの

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Introd	uction

Landau-Lifshitz mode

Riemann-Hilbert approac

Landau-Lifshitz model

• Landau-Lifshitz model is the anisotropic generalization of HM.

- イロト イ団ト イヨト イヨト 三目 - シタの

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University
Heisenberg magnet mode

Landau-Lifshitz mode

Riemann-Hilbert approac

< (**1**) > < ∃ >

References

Landau-Lifshitz model

- Landau-Lifshitz model is the anisotropic generalization of HM.
- We introduce the anisotropy in spin interaction

$$egin{aligned} \mathcal{H} &= -\sum_{n \in \mathbb{Z}} \log(1 - J_3 + JS^{(n)} \boldsymbol{\cdot} S^{(n+1)}) \ \mathcal{J} &= egin{pmatrix} J_1 & 0 & 0 \ 0 & J_2 & 0 \ 0 & 0 & J_3 \end{pmatrix}, \quad 0 < J_1 < J_2 < J_3. \end{aligned}$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Landau-Lifshitz model

- Landau-Lifshitz model is the anisotropic generalization of HM.
- We introduce the anisotropy in spin interaction

$$egin{aligned} \mathcal{H} &= -\sum_{n \in \mathbb{Z}} \log(1 - J_3 + JS^{(n)} \boldsymbol{\cdot} S^{(n+1)}) \ \mathcal{J} &= egin{pmatrix} J_1 & 0 & 0 \ 0 & J_2 & 0 \ 0 & 0 & J_3 \end{pmatrix}, \quad 0 < J_1 < J_2 < J_3. \end{aligned}$$

• Landau-Lifshitz equation is obtained in the continuous limit of properly modified lattice model

$$\frac{\partial S}{\partial t} = S \times \frac{\partial^2 S}{\partial x^2} + S \times JS, \quad \sum_{j=1}^3 S_j^2 = 1$$
$$S \to (0, 0, 1), \quad x \to \pm \infty$$

Andrei Prokhorov

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References 0000
Lax pair				

- Lax pair
 - The Lax pair is given by

$$\begin{cases} \frac{\partial \Psi}{\partial x} = U\Psi \\ \frac{\partial \Psi}{\partial t} = V\Psi \end{cases}, \quad \text{where} \\ U = -i\sum_{j=1}^{3} \sigma_{j}S_{j}w_{j}, \quad V = 2i\sum_{\substack{j,m,n=1\\j \neq m \neq n}}^{3} \sigma_{j}S_{j}w_{m}w_{n} + i\sum_{j=1}^{3} \sigma_{j}P_{j}w_{j}, \\ P_{j} = \left(\frac{\partial S}{\partial x} \times S\right)_{j} \\ w_{1} = \rho \frac{1}{\operatorname{sn}(\lambda, k)}, \quad w_{2} = \rho \frac{\operatorname{dn}(\lambda, k)}{\operatorname{sn}(\lambda, k)}, \quad w_{3} = \rho \frac{\operatorname{cn}(\lambda, k)}{\operatorname{sn}(\lambda, k)}. \\ \rho = \frac{\sqrt{J_{3} - J_{1}}}{2}, \quad k = \sqrt{\frac{J_{2} - J_{1}}{J_{3} - J_{1}}} - \text{elliptic modulus.} \end{cases}$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation

DQC

ntroduction	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References
eatures				

 $\lambda \in \mathbb{T}^2 = \left\{ \lambda : |\operatorname{Re}(\lambda)| \le 2K, |\operatorname{Im}(\lambda)| \le 2K'
ight\}$

where K and K' are complete elliptic integrals.

Andrei Prokhorov Department of Statistics, University of Chicago & Saint-Petersburg State University Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation 19 / 44

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References
Features				

$$\lambda \in \mathbb{T}^2 = \left\{ \lambda : |\operatorname{Re}(\lambda)| \le 2K, |\operatorname{Im}(\lambda)| \le 2K' \right\}$$

where K and K' are complete elliptic integrals.

• Landau-Lifshitz model admits degenerations to the Sine-Gordon equation when $J_1 \rightarrow 0$ and to the NLS equation when $J_1, J_2 \rightarrow 0$.

Department of Statistics, University of Chicago & Saint-Petersburg State University

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References
Features				

$$\lambda \in \mathbb{T}^2 = \left\{ \lambda : |\operatorname{Re}(\lambda)| \le 2K, |\operatorname{Im}(\lambda)| \le 2K' \right\}$$

where K and K' are complete elliptic integrals.

- Landau-Lifshitz model admits degenerations to the Sine-Gordon equation when $J_1 \rightarrow 0$ and to the NLS equation when $J_1, J_2 \rightarrow 0$.
- The Lax pair for the Landau-Lifshitz equation was found in [Skl79].

Andrei Prokhorov

ntroduction	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References
- eatures				

$$\lambda \in \mathbb{T}^2 = \left\{ \lambda : |\operatorname{Re}(\lambda)| \le 2K, |\operatorname{Im}(\lambda)| \le 2K' \right\}$$

where K and K' are complete elliptic integrals.

- Landau-Lifshitz model admits degenerations to the Sine-Gordon equation when $J_1 \rightarrow 0$ and to the NLS equation when $J_1, J_2 \rightarrow 0$.
- The Lax pair for the Landau-Lifshitz equation was found in [Skl79].
- In the next slides we will go over the inverse scattering method in more details.

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Jost solution

Andrei Prokhorov

• We remind the idea of the inverse scattering method: the dynamic is easier on the level of scattering data. Our first step is to establish scattering data corresponding to the initial conditions.

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Jost solution

Andrei Prokhorov

- We remind the idea of the inverse scattering method: the dynamic is easier on the level of scattering data. Our first step is to establish scattering data corresponding to the initial conditions.
- We assume "fast decaying" and smooth initial conditions

$$\left. S
ight|_{t=0} - (0,0,1) \in \mathcal{S}(\mathbb{R})$$

Department of Statistics. University of Chicago & Saint-Petersburg State University

where $\mathcal{S}(\mathbb{R})$ is the Schwartz class.

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Jost solution

- We remind the idea of the inverse scattering method: the dynamic is easier on the level of scattering data. Our first step is to establish scattering data corresponding to the initial conditions.
- We assume "fast decaying" and smooth initial conditions

$$\left. S
ight|_{t=0} - (0,0,1) \in \mathcal{S}(\mathbb{R})$$

where $\mathcal{S}(\mathbb{R})$ is the Schwartz class.

• That implies that all solutions of equation

$$\frac{\partial \Psi}{\partial x}(\lambda, x) = U(\lambda, x)\Psi(\lambda, x), \quad U(\lambda, x) = -i\sum_{j=1}^{3}\sigma_{j}S_{j}(x)w_{j}(\lambda)$$

behave like planar waves for $x \to \pm \infty$ up to constant factor.

Andrei Prokhorov

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Jost solution

- We remind the idea of the inverse scattering method: the dynamic is easier on the level of scattering data. Our first step is to establish scattering data corresponding to the initial conditions.
- We assume "fast decaying" and smooth initial conditions

$$\left. S
ight|_{t=0} - (0,0,1) \in \mathcal{S}(\mathbb{R})$$

where $\mathcal{S}(\mathbb{R})$ is the Schwartz class.

• That implies that all solutions of equation

$$\frac{\partial \Psi}{\partial x}(\lambda, x) = U(\lambda, x)\Psi(\lambda, x), \quad U(\lambda, x) = -i\sum_{j=1}^{3}\sigma_{j}S_{j}(x)w_{j}(\lambda)$$

behave like planar waves for $x \to \pm \infty$ up to constant factor.

• We fix two solutions called Jost solutions

$$\mathcal{F}_{\pm}(\lambda,x)\sim \mathrm{e}^{-\mathrm{i}w_{3}(\lambda)x\sigma_{3}}, \quad,x
ightarrow\pm\infty$$
 we have the second secon

Andrei Prokhorov

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 000000000000	References
Summetr	inc			

- Symmetries
 - The following shift properties hold

$$\begin{split} &w_1(\lambda+2K)=-w_1(\lambda), \quad w_1(\lambda+2\mathrm{i}K')=w_1(\lambda), \\ &w_2(\lambda+2K)=-w_2(\lambda), \quad w_2(\lambda+2\mathrm{i}K')=-w_2(\lambda), \\ &w_3(\lambda+2K)=w_3(\lambda), \quad w_3(\lambda+2\mathrm{i}K')=-w_3(\lambda), \end{split}$$

• They imply the symmetries of coefficient matrix

 $\sigma_3 U(\lambda + 2K, x)\sigma_3 = U(\lambda, x), \quad \sigma_1 U(\lambda + 2iK', x)\sigma_1 = U(\lambda, x).$

• and the symmetries of Jost solutions

$$\sigma_{3}F_{\pm}(\lambda+2K,x)\sigma_{3}=F_{\pm}(\lambda,x), \quad \sigma_{1}F_{\pm}(\lambda+2\mathrm{i}K',x)\sigma_{1}=F_{\mp}(\lambda,x).$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Scattering data

• By taking the ratio of Jost solutions we define the scattering matrix

$$S(\lambda) = (F_{-}(\lambda, x))^{-1} F_{+}(\lambda, x) = \begin{pmatrix} a(\lambda) & -\overline{b(\overline{\lambda})} \\ b(\lambda) & \overline{a(\overline{\lambda})} \end{pmatrix}.$$

- This formula suggests that the properties of scattering matrix are derived from the properties of Jost solutions.
- To construct the Jost solutions we would need to make the following transformation

$$\Upsilon_{\pm}(\lambda, x) = F_{\pm}(\lambda, x) \mathrm{e}^{\mathrm{i} x w_3(\lambda) \sigma_3} = \left(v_{\pm}^{(1)}(\lambda, x), v_{\pm}^{(2)}(\lambda, x) \right).$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Scattering data

• By taking the ratio of Jost solutions we define the scattering matrix

$$S(\lambda) = (F_{-}(\lambda, x))^{-1} F_{+}(\lambda, x) = \begin{pmatrix} a(\lambda) & -\overline{b(\overline{\lambda})} \\ b(\lambda) & \overline{a(\overline{\lambda})} \end{pmatrix}.$$

- This formula suggests that the properties of scattering matrix are derived from the properties of Jost solutions.
- To construct the Jost solutions we would need to make the following transformation

$$\Upsilon_{\pm}(\lambda, x) = F_{\pm}(\lambda, x) \mathrm{e}^{\mathrm{i} x w_3(\lambda) \sigma_3} = \left(\upsilon_{\pm}^{(1)}(\lambda, x), \upsilon_{\pm}^{(2)}(\lambda, x) \right).$$

• The result solves integral equation

$$rac{\partial \Upsilon_{\pm}}{\partial x}(\lambda,x) = U(\lambda,x)\Upsilon_{\pm}(\lambda,x) + \mathrm{i}w_3(\lambda)\Upsilon_{\pm}(\lambda,x)\sigma_3,$$

Andrei Prokhorov

Heisenberg magnet model

Landau-Lifshitz model

Riemann-Hilbert approach

References

Construction of Jost solutions

Lemma 1 ([Rod84]

The solutions $\widehat{v}^{(j)}_{\pm}(\lambda,x)$ of the integral equations

$$\widehat{v}_{\pm}^{(1)}(\lambda, x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \int_{\pm\infty}^{x} e^{i(\mathbb{1}-\sigma_3)w_3(\lambda)(x-\tau)} \left(U(\lambda, \tau) + iw_3(\lambda)\sigma_3 \right)$$

$$\begin{array}{l} \times \, \widehat{v}_{\pm}^{(1)}(\lambda,\tau) d\tau, \\ \widehat{v}_{\pm}^{(2)}(\lambda,x) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \int_{\pm\infty}^{x} \mathrm{e}^{-\mathrm{i}(\mathbb{1}+\sigma_{3})w_{3}(\lambda)(x-\tau)} \left(U(\lambda,\tau) + \mathrm{i}w_{3}(\lambda)\sigma_{3} \right) \end{array}$$

 $\times \widehat{v}^{(2)}_{\pm}(\lambda,\tau) d\tau,$

coincide with functions $v_{\pm}^{(j)}(\lambda, x)$ introduced earlier.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet mode

Landau-Lifshitz mode

Riemann-Hilbert approac

References

Analytical properties of Jost solutions

• Let us denote

$$\begin{split} \Omega_+ &= \left\{ \lambda: 0 \leq \operatorname{Im}(\lambda) \leq 2\mathcal{K}'; \left| \operatorname{Re} \lambda \right| \leq 2\mathcal{K} \right\}, \\ \Omega_- &= \left\{ \lambda: -2\mathcal{K}' \leq \operatorname{Im}(\lambda) \leq 0; \left| \operatorname{Re} \lambda \right| \leq 2\mathcal{K} \right\}, \\ \Gamma_1 &= \left\{ \lambda \in \mathbb{T}^2 : \operatorname{Im}(\lambda) = 0 \right\} \\ \Gamma_2 &= \left\{ \lambda \in \mathbb{T}^2 : \operatorname{Im}(\lambda) = 2\mathcal{K}' \right\} \end{split}$$

Andrei Prokhorov De

Department of Statistics, University of Chicago & Saint-Petersburg State University

< 67 ▶

< ∃ >

Heisenberg magnet model

Landau-Lifshitz mode

Riemann-Hilbert approach

References

Analytical properties of Jost solutions

Let us denote

$$\begin{split} \Omega_+ &= \left\{ \lambda: 0 \leq \operatorname{Im}(\lambda) \leq 2\mathcal{K}'; \left| \operatorname{Re} \lambda \right| \leq 2\mathcal{K} \right\}, \\ \Omega_- &= \left\{ \lambda: -2\mathcal{K}' \leq \operatorname{Im}(\lambda) \leq 0; \left| \operatorname{Re} \lambda \right| \leq 2\mathcal{K} \right\}, \\ \Gamma_1 &= \left\{ \lambda \in \mathbb{T}^2 : \operatorname{Im}(\lambda) = 0 \right\} \\ \Gamma_2 &= \left\{ \lambda \in \mathbb{T}^2 : \operatorname{Im}(\lambda) = 2\mathcal{K}' \right\} \end{split}$$

Lemma 2 ([Rod84])

The functions $v_{\pm}^{(1)}(\lambda, x)$, $v_{\mp}^{(2)}(\lambda, x)$ are analytic in the domains Ω_{\pm} and bounded in the domains $\overline{\Omega}_{\pm}$ respectively. In addition $v_{\pm}^{(1)}(\lambda, x)$, $v_{\pm}^{(2)}(\lambda, x) \in C^{\infty}(\Gamma_1)$.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Convenient formulas for scattering data

Lemma 3

The functions $a(\lambda)$, $b(\lambda)$ admit two alternative expressions.

1 They can be written as the integrals

$$\begin{pmatrix} \mathsf{a}(\lambda) \\ \mathsf{b}(\lambda) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{i}(\mathbb{1} - \sigma_3)w_3(\lambda)\tau} \left(U(\lambda, \tau) + \mathrm{i}w_3(\lambda)\sigma_3 \right)$$

$$\times v_{-}^{(1)}(\lambda, \tau) d\tau.$$

2 They can also be expressed as the following determinants

$$\begin{aligned} \mathsf{a}(\lambda) &= \mathsf{det}(v_+^{(1)}(\lambda, x), v_-^{(2)}(\lambda, x)), \\ \mathsf{b}(\lambda) &= \mathrm{e}^{2\mathrm{i}w_3(\lambda)x} \, \mathsf{det}(v_-^{(1)}(\lambda, x), v_+^{(1)}(\lambda, x)). \end{aligned}$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach	References
Reflection	coefficient			

• We introduce the *reflection* coefficient

$$\mathsf{r}(\lambda) = \frac{\mathsf{b}(\lambda)}{\mathsf{a}(\lambda)}.$$

 Andrei Prokhorov
 Department of Statistics, University of Chicago & Saint-Petersburg State University

 Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation
 26 / 44

・ロト ・四ト ・ヨト ・ヨト

3

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach 00000000000	References 0000
Reflection	coefficient			

• We introduce the *reflection* coefficient

$$\mathsf{r}(\lambda) = \frac{\mathsf{b}(\lambda)}{\mathsf{a}(\lambda)}.$$

- Given the reflection coefficient, one can recover both b($\lambda)$ and a($\lambda)$ using formula

$$\mathsf{a}(\lambda) = \exp\left\{-rac{1}{2\pi\mathrm{i}}\int_{-2\kappa}^0 \log\left(1+|\mathsf{r}(\eta)|^2
ight)rac{w_3(\eta-\lambda)}{
ho}d\eta
ight\}, \quad \lambda\in\Omega_+$$

• Function $\frac{w_3(\eta-\lambda)}{\rho}$ plays role of Cauchy kernel. It has simple pole with residue 1 at zero.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Reflection coefficient properties

Lemma 4

Under the soliton free assumption, $a(\lambda) \neq 0$ the reflection coefficient $r(\lambda)$ corresponding to the initial data from the Schwartz class satisfies

1
$$r(\lambda) \in C^{\infty}(\Gamma_1 \cup \Gamma_2)$$

2 $r(\lambda + 2K) = -r(\lambda)$
3 $r(\lambda + 2iK') = -\overline{r(\overline{\lambda})}$
4 $r(0) = 0$
5 $\frac{d^n r(\lambda)}{d\lambda^n} = \mathcal{O}(\lambda^m), \quad \lambda \to 0, \quad \forall n, m \in \mathbb{N}.$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Andrei Prokhorov

Heisenberg magnet mode

Landau-Lifshitz model

Riemann-Hilbert approac

References

Riemann-Hilbert problem

• Introduce the following functions

$$Y_{+}(\lambda, x) = \left(\frac{v_{+}^{(1)}(\lambda, x)}{\mathsf{a}(\lambda)}, v_{-}^{(2)}(\lambda, x)\right),$$
$$Y_{-}(\lambda, x) = \left(v_{-}^{(1)}(\lambda, x), \frac{v_{+}^{(2)}(\lambda, x)}{\overline{\mathsf{a}(\overline{\lambda})}}\right),$$

Department of Statistics, University of Chicago & Saint-Petersburg State University

A ►

- 2 Heisenberg magnet model
- 3 Landau-Lifshitz model
- 4 Riemann-Hilbert approach
- **6** References

- ・ロト・(型ト・(型ト・(型ト)) 通い ろくの

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Riemann-Hilbert problem

Riemann-Hilbert problem 1.

1 The function $Y(\lambda, x)$ is bounded, doubly periodic, and piecewise analytic for $\lambda \in \mathbb{T}^2/(\Gamma_1 \cup \Gamma_2)$. Orientation of the contours Γ_1, Γ_2 is as specified below.

Figure 1: Contours Γ_1 and Γ_2 . (\Box) (\Box) (\Box) (\Box) (\Box)

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz model

Riemann-Hilbert approa

References

Riemann-Hilbert problem

2 For $\lambda \in \Gamma_1, \Gamma_2$, the following jump condition holds

$$\begin{split} Y_{+}(\lambda, x) &= Y_{-}(\lambda, x)G(\lambda, x), \\ G(\lambda, x) &= \begin{pmatrix} 1 + |\mathsf{r}(\lambda)|^2 & \overline{\mathsf{r}(\lambda)}e^{-2\mathrm{i}xw_3(\lambda)} \\ \mathsf{r}(\lambda)e^{2\mathrm{i}xw_3(\lambda)} & 1 \end{pmatrix} \end{split}$$

S The function Y(λ, x) satisfies the following symmetry conditions

$$\sigma_3 Y(\lambda + 2K, x)\sigma_3 = Y(\lambda, x), \quad \sigma_1 Y(\lambda + 2iK', x)\sigma_1 = Y(\lambda, x).$$

4 Function $Y(\lambda, x)$ satisfies normalization condition

$$\det(Y(\lambda,x))=1$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz model

References

Uniqueness

Lemma 1

Solution $Y(\lambda, x)$ of the RHP 1 is unique up to a sign.

Theorem 2

Let $Y(\lambda, x)$ be the solution of the Riemann-Hilbert problem 1 with $r(\lambda)$ satisfying properties (1)-(5). Then the function S(x)constructed from it by formula

$$Y(0,x)\sigma_3(Y(0,x))^{-1} = \sum_{j=1}^3 S_j(x)\sigma_j,$$

belongs to the Schwartz class: $S_1(x), S_2(x), S_3(x) - 1 \in S(\mathbb{R})$, and it defines the initial data for the LL equation whose reflection coefficient is given by $r(\lambda)$. < (T) > <

Andrei Prokhorov

Time evolution

Lemma 3 ([Skl79])

Assume t > 0 is fixed and

$$S_1(x,t),S_2(x,t),S_3(x,t)-1\in \mathcal{S}(\mathbb{R})$$

are solutions of LL equation. Denote by $F_{\pm}(\lambda, x, t)$ the Jost solutions corresponding to S(x, t) with t > 0. Then the matrix-valued functions

$$J_{\pm}(\lambda, x, t) = F_{\pm}(\lambda, x, t) \mathrm{e}^{2\mathrm{i}tw_1(\lambda)w_2(\lambda)\sigma_3}$$

solves equations of Lax pair of LL equation. Moreover the scattering data depends on time as

$$\mathsf{a}(\lambda, t) = \mathsf{a}(\lambda), \quad \mathsf{b}(\lambda, t) = \mathsf{b}(\lambda) \mathrm{e}^{-4\mathrm{i}tw_1(\lambda)w_2(\lambda)}.$$

Andrei Prokhorov

Riemann-Hilbert problem corresponding to LL dynamics

Riemann-Hilbert problem 2.

- The function $Y(\lambda, x, t)$ is bounded and piecewise analytic for $\lambda \in \mathbb{T}^2/(\Gamma_1 \cup \Gamma_2)$.
- **2** For $\lambda \in \Gamma_1, \Gamma_2$, the following jump condition holds

$$\begin{split} Y_{+}(\lambda, x, t) &= Y_{-}(\lambda, x, t)G(\lambda, x, t) \\ G(\lambda, x, t) &= \begin{pmatrix} 1 + |\mathsf{r}(\lambda)|^2 & \overline{\mathsf{r}(\lambda)}e^{-2\mathrm{i}tp(\lambda,\varkappa)} \\ \mathsf{r}(\lambda)e^{2\mathrm{i}tp(\lambda,\varkappa)} & 1 \end{pmatrix} \end{split}$$

where

$$p(\lambda,\varkappa) = \varkappa w_3(\lambda) - 2w_1(\lambda)w_2(\lambda), \quad \varkappa = \frac{x}{t}$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Riemann-Hilbert problem corresponding to LL dynamics

S The function Y(λ, x, t) satisfies the following symmetry conditions

$$\sigma_3 Y(\lambda + 2K, x, t)\sigma_3 = Y(\lambda, x, t), \quad \sigma_1 Y(\lambda + 2iK', x, t)\sigma_1 = Y(\lambda, x, t)\sigma_1$$

4 Function $Y(\lambda, x, t)$ satisfies normalization condition

$$\det(Y(\lambda, x, t)) = 1.$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Heisenberg magnet model

Landau-Lifshitz model

Riemann-Hilbert approad

References

Solution of LL from RHP

Lemma 4

Given $Y(\lambda, x, t)$ is a solution of the Riemann-Hilbert problem 2 the function

$$\Psi(\lambda, x, t) = Y(\lambda, x, t) \mathrm{e}^{-\mathrm{i} t p(\lambda, arkappa) \sigma_3}$$

solves Lax pair of LL equation with $S_j(x, t)$ given by

$$Y(0,x,t)\sigma_3(Y(0,x,t))^{-1} = \sum_{j=1}^3 S_j(x,t)\sigma_j.$$
 (1)

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Main result

Theorem 5 ([?])

Let $Y(\lambda, x, t)$ be the solution of the Riemann-Hilbert problem 2 with $r(\lambda)$ satisfying the properties (1)-(5) and let the vector function S(x, t) be determined by equation (1). Then, S(x, t)solves the Cauchy problem for the LL equation characterized by the reflection coefficient $r(\lambda)$ and for $t \to \infty$, $0 < m \le \frac{x}{t} \le M$,

$$S_{1}(x,t) = \frac{1}{\rho} \left(\frac{2\nu}{t\varphi_{0}}\right)^{1/2} w_{2}(\lambda_{0}) \cos\theta(x,t) + \mathcal{O}(t^{-\frac{2}{3}}),$$

$$S_{2}(x,t) = \frac{1}{\rho} \left(\frac{2\nu}{t\varphi_{0}}\right)^{1/2} w_{1}(\lambda_{0}) \sin\theta(x,t) + \mathcal{O}(t^{-\frac{2}{3}}),$$

$$S_{3}(x,t) = 1 - \frac{1}{2} \left(S_{1}^{2}(x,t) + S_{2}^{2}(x,t)\right) + \mathcal{O}(t^{-\frac{7}{6}}),$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

ntroduction	Heisenberg magnet model 000000000	Landau-Lifshitz model 0000000000000	Riemann-Hilbert approach 000000000000	References
_				

Parameters

where

$$egin{aligned} & heta(x,t) = 2tp(\lambda_0,arkappa) +
u\log t - rac{\pi}{4} - rg \Gamma(\mathrm{i}
u) + rg r_0 - 2\mathrm{c}_0 + \ &
u\log\left(rac{2arphi_0}{eta_0^2}
ight), \end{aligned}$$

$$p(\lambda, \varkappa) = \varkappa w_3(\lambda) - 2w_1(\lambda)w_2(\lambda), \quad \varkappa = \frac{\chi}{t}$$

and the value of the stationary point $\lambda_0 \in [-2K, 0]$ is determined by the equation $\partial_{\lambda} p(\lambda_0, \varkappa) = 0$. With such λ_0 , the parameter $\varphi_0 = -\partial_{\lambda}^2 p(\lambda_0, \varkappa)$ is obtained from

$$\begin{split} \varphi_0 &= \frac{1}{\rho^2} \left(8 w_1(\lambda_0) w_2(\lambda_0) w_3^2(\lambda_0) + (w_1^2(\lambda_0) + w_2^2(\lambda_0)) (2 w_1(\lambda_0) w_2(\lambda_0) - \varkappa w_3(\lambda_0)) \right), \end{split}$$

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Introduction 0000	Heisenberg magnet model	Landau-Lifshitz model	Riemann-Hilbert approach	References
Paramete	ers			

• The remaining terms are determined as follows:

$$\begin{split} \mathbf{r}_0 &= \mathbf{r}(\lambda_0), \quad \nu = \frac{1}{2\pi} \log(1 + |\mathbf{r}_0|^2). \\ \beta(\lambda) &= \frac{\sigma(\lambda)\sigma(\lambda - 2K)}{\sigma(\lambda + 2\mathbf{i}K')\sigma(\lambda - 2\mathbf{i}K' - 2K)}, \\ \beta_0 &:= \frac{\sigma(-2K)}{\sigma(2\mathbf{i}K')\sigma(-2\mathbf{i}K' - 2K)}, \\ \mathbf{c}_0 &= \frac{1}{2\pi} \int_{\lambda_0}^0 d\left(\log\left(1 + |\mathbf{r}(\eta)|^2\right)\right) \log\beta(\eta - \lambda_0), \end{split}$$

where $\sigma(\lambda)$ denotes the Weierstrass sigma function.

• This result was obtained in [B188] with much lower level of rigor.

Introduction 0000	Heisenberg magnet model 000000000	Landau-Lifshitz model	Riemann-Hilbert approach	References 0000
Future w	ork			

- Soliton gas analysis for the LL equation.
- Rogue waves of infinite order.
- Approximation theory on the torus with the goal to optimize numerical computation of singular integrals of type

$$\int_{0}^{2K} f(\mu)C(\mu,\lambda-\mathrm{i}0)d\mu$$

where

$$C(\mu,\lambda) := \zeta(\mu-\lambda) - \zeta(\mu-\mathrm{i} \mathsf{K}') + \zeta(\lambda-\mathsf{K}-\mathrm{i} \mathsf{K}') + \zeta(\mathsf{K}),$$

and $\zeta(.)$ is the Weierstrass ζ -function.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

- 2 Heisenberg magnet model
- 3 Landau-Lifshitz model
- 4 Riemann-Hilbert approach

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

[BI88] R. F. Bikbaev and A. R. Its. Asymptotic behavior of the solution to the Cauchy problem as $t \to \infty$ for the Landau-Lifshits equation. *Teoret. Mat. Fiz.*, 76(1):3–17, 1988.

[DZ93] P. Deift and X. Zhou.

A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. *Ann. of Math. (2)*, 137(2):295–368, 1993.

 [FT07] Ludwig D. Faddeev and Leon A. Takhtajan. Hamiltonian methods in the theory of solitons. Classics in Mathematics. Springer, Berlin, english edition, 2007. Translated from the 1986 Russian original by Alexey G. Reyman.
[Rod84] Yu. L. Rodin.

The Riemann boundary problem on Riemann surfaces and the inverse scattering problem for the Landau-Lifschitz equation.

Phys. D, 11(1-2):90–108, 1984.

[Skl79] E K Sklyanin. On complete integrability of the Landau–Lifshitz equation. Technical report, 1979.

[ZT79] V. E. Zakharov and L. A. Takhtajan. Equivalence of a nonlinear Schrödinger equation and a Heisenberg ferromagnet equation. *Teoret. Mat. Fiz.*, 38(1):26–35, 1979.

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

< 同 ▶ < 三 ▶

Thank You

Andrei Prokhorov

Department of Statistics, University of Chicago & Saint-Petersburg State University

Nonlinear steepest descent on a torus: A case study of the Landau-Lifshitz equation