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e
Complex Wishart Matrix

@ Consider n x m matrix X, n > m with Xj; complex valued
independent random variables with probability density function

T
@ One can think about columns of X as independent Gaussian

vectors.

@ m x m matrix X*X is called the uncorrelated complex
Wishart matrix.



B
Eigenvalue p.d.f

@ Joint probability density function for eigenvalues of X*X is
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@ One can generalize this density for o > —1 as
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@ The last formula describes Laguerre Unitary Ensemble and
can be interpreted as the log gas with Hamiltonian
m
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Generalized Laguerre polynomials

@ Generalized Laguerre polynomials are orthogonal polynomials
determined by the condition
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@ The probability density function (1) can be rewritten as the
determinant of Christoffel Darboux kernel
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k-point correlation function

o Consider k-point correlation function
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@ The correlation functions also can be written as determinant.
That means that Laguerre Unitary Ensemble is determinantal
point process.
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Eigenvalues probabilities

o Let's compute the probability En,(¢, (0,v)) that there are
exactly / particles/eigenvalues in the interval (0, ).
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Generating function for eigenvalues probabilities

@ Introduce generating function
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@ It is constructed in such a way, so that
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Generating function is Fredholm determinant

@ It also holds, that
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@ Using the determinant formula (3) we get

Em((0,1),€) = det(l — £Knm)

where K, is the operator in L((0,v)) with
Christoffel-Darboux kernel (2).



e
Gap probabilities for the thinned ensemble

@ Thinning procedure consists of removing every particle with
probability 1 — « € (0,1]. Then the gap probability
Ex(0,(0,v)) of thinned ensemble is given by
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Large m limit of Christoffel-Darboux kernel

@ We consider large m limit of Laguerre Unitary Ensemble using

asymptotics of Generalized Laguerre polynomials in different
regions.

@ Global limiting density is given by Marchenko-Pastur law
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@ We are interested in the smallest eigenvalue. Near the origin
the appropriate limit of Christoffel-Darboux kernel is given by
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Limiting distribution of smallest eigenvalue of thinned
Laguerre Unitary Ensemble

@ Taking the large m limit after change of variable in the series
expansion of Fredholm determinant gives

i Pr (Yo = ) = i £ (0. 0.57,)) = det(i =K

where Kpess is the integral operator in L((0, t)) with the
kernel (4).



Asymptotics for small t

@ For a > 0 using the Fredholm determinant expansion we have
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Integrable integral operator

@ Operator 7Kpess is integrable integral operator, since its
kernel (4) can be written as

r}/KBeSS(Xay) = Xia

where



Resolvent

@ For resolvent we have
(I - ’}/KBess)_1 =1+R,
where R is the integral operator with kernel

where

Fj= (I = vKpess) *6, Gy = (I — 7KBess) ;-



Riemann-Hilbert problem

@ Consider the matrix-valued function

t
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@ Y(z) is holomorphic function outside of the interval (0, t). On
the interval it has boundary values Y4 (z).
@ Let's notice that for z € (0, t)
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Riemann-Hilbert problem

@ Now we have

Y (2) = Y_(2) = —27iF(2)g" (z) = —2niY_(2)f(2)g (2).
@ That function satisfy RHP1

@ Y(z) is holomorphic outside of the interval (0, t).

@ Y. (2) = Y (2)(I- 2rif(2)g"(2))
© Y(z) is integrable near end points of the interval.
Q Y(2)=1+0(z1Y, z— oo

@ Solution to such Riemann-Hilbert problem is unique.



Relation to Fredholm Determinant

@ We can rescale the variables to get
det(I — YKBess) = det(I — YK pess)
where Kpeass acts on L5((0,1)) with the kernel
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@ Using the Bessel equation we have
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Relation to Fredholm Determinant

o We get
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Deformation of Riemann-Hilbert problem

@ We can notice that from Bessel equation it follows
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@ Since the coefficient matrix has zero trace, we can find the
fundamental solution with determinant 1, such that its first
column is proportional to f. Take
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e
Deformation of Riemann-Hilbert problem

WV, (z) satisfies the RHP2, solution to which is unique

@ V,(z) is holomorphic outside [0, +00)
e
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Deformation of Riemann-Hilbert problem

o Consider
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@ Then X(z) satisfies RHP3
@ X(z) is holomorphic outside [0, +00)
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e
Deformation of Riemann-Hilbert problem
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Result of asymptotic analysis

@ After that we need to open lenses and construct parametrices
to find asymptotics t — oo. We find asymptotics of (Y1)12
and hence of the Fredholm determinant.

lim Pr <)\7
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where v = —In(1 — 7).



Isomonodromic deformation equations

@ The jump matrix for X(z) is independent from z and t.
Therefore its logarithmic derivative is rational function of z.
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@ Matrices A,B,C,E,F can be expressed in terms of parameters:
q,p,« and t where

g = t(Y1)5 +2((Y1)u — (1)22),
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e Compatibility condition of (5) is called isomonodromic
deformation equation.




Hamiltonian equations and action integral

@ Isomonodromic deformation equation and is Hamiltonian with

(Y1)12 _ -1
2 4t
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@ We can rewrite representation for the determinant as
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Another determinant representation

@ We can rewrite the action integral
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@ Now we don't have integral with respect to t and we can plug
in computed asymptotics.



Final result
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where v = —In(1 —v) and G()) is the Barnes G-function.
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